2016 Annual Report Offshore Environmental Effects Monitoring Program ExxonMobil Canada Properties - Sable Offshore Energy Project

Submitted by:

ExxonMobil Canada Properties Sable Offshore Energy Project 1701 Hollis Street Halifax, NS

Date of Submission: March 31, 2017

TABLE OF CONTENTS

EX	ECUTIVE	SUMMARY	3
1.	INTRODU	JCTION	6
	1.1	Overview	7
	1.2	BACKGROUND	8
	1.3	EMISSIONS AND DISCHARGES	9
	1.4	PROJECT ACTIVITIES	10
	1.5	GOALS AND OBJECTIVES	10
	1.6	SCOPE	10
	1.7	REPORT ORGANIZATION	12
	1.8	END OF FIELD LIFE MONITORING	12
	1.9	REFERENCES	12
2.	PRODUC	ED WATER CHEMISTRY AND TOXICITY	1
	2.1	RATIONALE & BACKGROUND	2
	2.2	GOALS	4
	2.3	OBJECTIVES	4
	2.4	SAMPLING PROCEDURES	5
	2.5	ANALYTICAL METHODS	6
	2.6	RESULTS	. <u>6</u>
	2.7	DISCUSSION	9
	2.8	PW MONITORING PLAN FOR 2015	15
	2.9	References	19
3.	AIR QUA	LITY	1
	3.1	RATIONALE & BACKGROUND	. 3
	3.2	GOALS	. 8
	3.3	OBJECTIVES	
	3.4	2015 AIR QUALITY MONITORING ON SABLE ISLAND	
	3.5	ANALYSES	
	3.6 3.7	RESULTS & DISCUSSION CONCLUSIONS	
	3.9	REFERENCES	
4.		NITORING	
		RATIONALE / HISTORY	
	4.1		
	4.2	GOALS	
	4.3	OBJECTIVES	
	4.4	METHODOLOGY	.4
	4.5	ANALYSIS/RESULTS	.4
	4.6	CONCLUSIONS	11
	4.7	CURRENT AND FUTURE MONITORING	12
	4.8	References	12
5.	BEACHE	D SEABIRD SURVEYS	1
	5.1	RATIONALE	.2
	5.2	GOAL	-
	5.3	OBJECTIVES	
	5.4	METHODOLOGY	
	5.5	ANALYSIS	3

2016 Annual Report– SOEP Offshore Environmental Effects Monitoring Program Section 1 Introduction

		RESULTS	
		CONCLUSIONS	
6.	SUMMAR	RY AND CONCLUSIONS	1

EXECUTIVE SUMMARY

This report is a compilation of results for the 2016 Sable Offshore Energy Project (SOEP) Environmental Effects Monitoring (EEM) program.

The 2016 offshore EEM program was developed by building on the results and lessons learned to date and following recommendations made by the CNSOPB EEM Review Committee which includes representation of Fisheries and Oceans Canada, Environment and Climate Change Canada, and the Canadian Environmental Assessment Agency. Since the SOEP offshore EEM is intended to be adaptive, efficient and meaningful, the monitoring plan is adjusted periodically. This includes removing or adding monitoring components or sampling sites with the prior approval of the CNSOPB EEM Review Committee based on the latest monitoring results and scientific information, or to address new Project activities.

Components of the 2016 EEM Program included:

- Chemical and Toxicity analysis of produced water from Thebaud, Alma, Venture and South Venture platforms
- Air quality monitoring on Sable Island
- Flare monitoring on the Thebaud platform
- Seabird and bird monitoring on platforms and supply vessels via assigned offshore personnel responsible for tracking bird observations/data
- Beached bird surveys on Sable Island

Produced water samples were collected by ExxonMobil Canada (EMC) staff. Chemical analysis was conducted by SGS Laboratories. Harris Industrial Testing Services and Aquatox conducted the toxicity testing and Hurley Environment Ltd. prepared the produced water discussion in Section 2 of this report.

Flare monitoring observations were compiled by EMC staff in 2016. In recent years Nova Scotia Environment changed their air quality mandate to focus attention on air-zones in populated areas of Nova Scotia mainland. This resulted in a cessation of their management of certain air quality instruments on Sable Island. New H2S, SO2 and BC instruments were purchased in early 2016. A refurbished O3 analyzer and a PM2.5 (BAM 1020) was added to the monitoring equipment on the island in early 2016. Therefore, 2016 had reasonable environmental effects monitoring coverage. This report features data, where available, between January 1st 2016 – December 31st 2016 for the Ultrafine 3031, APS 3321, O3, H2S, SO2, NOx, BC, and DRX PMTSP/10/4/2.5/1.

Further to SOEP's Canadian Wildlife Permit LS 2560 requirements, an annual report detailing the numbers of birds salvaged, released and deceased, provided monitoring data on those species observed on the offshore facilities. Beached bird survey data from Sable Island in section 5 were provided by Zoe Lucas, Sable Island Environmental Specialist.

Mussel collection and body burden analysis was not planned in 2016. Eleven sampling events between the years 1999 and 2015 to monitor the potential for uptake of hydrocarbons in mussels has shown that the presence of aliphatic hydrocarbons is attributable primarily to biogenic hydrocarbons generated by phytoplankton. Over the years, mussels collected from the legs of the Thebaud platform exhibited lower concentrations of metals relative to control mussels purchased at a local grocery store.

The SOEP offshore EEM program was designed principally to verify predictions made during the SOEP Environmental Assessment (EA) process. These predictions were based on underlying assumptions which were purposefully conservative. Overall, the EA process concluded that any residual effects of routine project activities (after mitigation) on Valued Ecosystem Components (VECs) in the marine environment would be minor or insignificant and would be restricted to within the 500 m-radius safety zones around offshore platforms. Since surveys began in 1998, EEM results have validated the predictions.

Several mitigative measures beyond those identified in the EA have been undertaken by EMC to further reduce the likelihood of environmental impacts. Some examples from 2016 include:

- All non-essential lighting was turned off at the North Triumph and Alma platforms to minimize potential attraction of marine birds;
- Strict monitoring and management of diesel fuel used in the offshore supply vessels, which yielded emissions reductions for the fleet;
- Achieving an annual average OIW target of under 30mg/L in produced water for the offshore platforms between 2014-2016; and
- Achieving the goal of no Drains water excursions over 15 mg/L for the offshore platforms between 2011-2016.

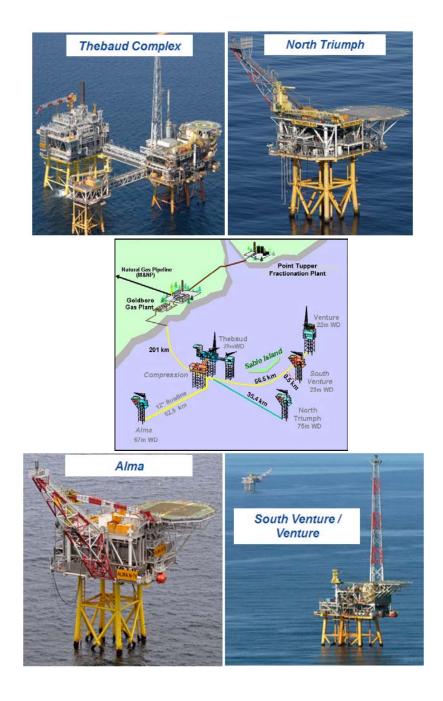
Notable results of the 2016 program include:

Produced Water Chemistry and Toxicity (Section 2)

- Total Petroleum Hydrocarbon daily average values were below Offshore Waste Treatment Guidelines (OWTG) (2010) oil-in-water concentration limits at four SOEP platforms Thebaud, Alma and South Venture and Venture.
- Annual PW characterization samples taken at Thebaud, Alma and South Venture and Venture platforms in 2016 are considered 'toxic' based on results of a variety of toxicity bioassays.
- Test results since 2005 show that chemical and toxicity levels vary widely over time and location in large part due to varying reservoir characteristics.
- Toxicity of produced water samples from SOEP platforms is not considered an environmentally relevant factor of concern based on findings in a DFO COOGER research study (2010) which found that potential contaminants in the relatively small PW discharges from SOEP platforms are diluted rapidly to no-effects concentration levels within tens of metres of the subsurface discharge caisson.

Air Quality/Flare Monitoring (Section 3)

- EMC is participating in an ESRF funded study led by Dalhousie University entitled "Data Display and Source Apportionment of Volatile Organic Compounds and Particulate Matter on Sable Island". This project will provide regulators, industry and researchers with necessary data to evaluate the impacts attributable to contaminant emissions to ambient air from petroleum related activities.
- Kingfisher Environmental Health Consultants (KEHC) has conducted data analysis and graphing of air quality and meteorological data from 2016, identified elevated events (no exceedences) in air monitoring data while cross referencing these to wind direction/wind speed. The objective is to determine potential correlation with a particular facility's operations, if required.
- On October 5, 2016 there was an elevated measurement of NOx of 7.16 ppbv. This happened a few days after the planned field-wide maintenance shutdown. The air flow during the elevated observation was directly over the Thebaud platform. However, the NOx level was below the operational "spike" threshold set at 17 ppbv and well below the Canada Ambient Air Quality Objective of 213 ppbv.


Seabird Monitoring (Section 4)

• Further to SOEP's Canadian Wildlife Permit LS 2560 requirements, an annual report detailing the numbers of birds salvaged, released and deceased on the platforms provided monitoring data on those species observed on the offshore facilities.

Beached Bird Surveys (Section 5)

- During 2016, the corpses and fragments of 149 beached seabird corpses were collected on Sable Island. Alcids accounted for 28.9% of total seabird corpses recovered. Of the 149 corpses, 98 (65.8%) were complete (i.e. with >70% of body intact, Codes 0-3). Table 5-3 shows totals & linear densities for clean complete corpses (Code 0) for winter (November-April) and summer (May-October), and annual oiling rate based on complete corpses (i.e., with >70% of body intact, Codes 0 - 3).
- The overall oiling rate for all species combined (based on complete corpses, Codes 0 to 3) was 0.0% (compared with 0.5% in 2015 and 3.2% in 2014). In particular, the oiling rate for alcids was 0.0% (compared with 1.7% in 2015 and 7.9% in 2014).
- None of the 98 complete corpses were oiled, and of the 51 incomplete corpses (Code 4) one—an Atlantic Puffin, comprised of wings, tail and feet, and found in January—showed a trace of oil on the tail. Since the oiling rate is based on complete corpses, this specimen is not represented in the reported oiling rate of 0.0% for alcids. Analysis of the oil determined it to be engine room bilge, possibly from a coastal or supply vessel running on Marine Diesel, as the sample was relatively unweathered (likely <2 weeks old), indicating a nearby source.

1. INTRODUCTION

1.1 OVERVIEW

This report is a compilation of studies for the 2016 Sable Offshore Energy Project (SOEP) Environmental Effects Monitoring (EEM) program. Figure 1-1 in the Appendix shows the location of the platforms and pipelines. Data were provided by various EMC staff, contracted specialists and laboratories:

- Beached bird survey data was collected by Zoe Lucas, Sable Island Environmental Specialist;
- Bird monitoring data on birds salvaged, released and deceased on the offshore platforms collected daily by EMC staff;
- Produced water toxicity analyses was provided by Harris Industrial Testing (contracted to EMC) and Aquatox (subcontracted to Harris);
- Produced water chemical analyses was provided by SGS Laboratories under contract to EMC;
- Flare monitoring observations were made daily by EMC staff;
- Air emissions monitoring data from the Sable Island Air Quality Monitoring Station was collected by Kingfisher Environmental Health Consultants supported by Dalhousie Departments of Process Engineering and Applied Science and Oceanography; and

The SOEP offshore EEM program initially focused on determining potential effects of drilling and production activities at Tier 1 sites (i.e., Venture, Thebaud, and North Triumph) beginning in 1997. With the majority of the development drilling completed and the start-up of operations at Tier 1 sites by 2000, EEM surveys undertaken from 2001 to 2003 focused on the effects on sediments and bottom fauna of exposure to intermittent discharges of muds/cuttings during drilling and continuous produced water discharges during operations. Until 2002, the assessment of produced water was delayed until the produced water volume was of sufficient quantity to study.

The 2005 program addressed start-up activities at Tier 2 sites (Alma in 2003 and South Venture in 2004) whilst considering lessons learned from the Tier I EEM Program and the recommendations from the 2003 Offshore Environmental Effects Monitoring Workshop held at the Bedford Institute of Oceanography.

Based on the results observed and the adaptive basis of the EEM program, the scope for the 2006 program was modified. Sediment chemistry and toxicity, scallop taint and body burden, and fish health components were discontinued in the 2006 program.

Subsequent offshore EEM programs were built on the previous years' EEM programs, and were developed from recommendations made by the Canada-Nova Scotia Offshore Petroleum Board (CNSOPB) EEM Review Committee which includes representatives of Fisheries and Oceans Canada (DFO), Environment and Climate Change Canada (ECCC), and the Canadian Environmental Assessment Agency (CEAA).

A summary of the history of the SOEP EEM program is provided in Table 1-4 in the Appendix.

1.2 BACKGROUND

The purpose of the EEM program is to test whether the effects of facility presence and production emissions into the marine and atmospheric environments occur within the zones of influence predicted by the Environmental Impact Statement (EIS) (Table 1-1). Environmental measurements are concentrated where meaningful changes are expected to occur and where the point source discharge is located. The 2016 offshore EEM program was designed to address relevant predictions made during the SOE environmental assessment process.

EIS PREDICTION ¹	VALUED ECOSYSTEM COMPONENT ²	2016 EEM COMPONENT
"IMPACTS OF EFFLUENT DISCHARGES (E.G. PRODUCED WATER) WERE CONSIDERED TO HAVE NO SIGNIFICANT IMPACTS ON THE MARINE ENVIRONMENT."	• FISH	PRODUCED WATER CHEMISTRY AND TOXICITY
"AIR EMISSIONS WERE CONSIDERED TO HAVE NO SIGNIFICANT IMPACTS ON THE MARINE ENVIRONMENT."	SABLE ISLAND	FLARE MONITORINGAIR QUALITY/ EMISSIONS ANALYSIS
"LIGHTS [FROM WORK LIGHTS AND GAS FLARES] MAY ATTRACT MIGRANT BIRD SPECIES, ESPECIALLY IN FOG AND/OR LOW CLOUD AND RAIN." ³	SEABIRDS	ANNUAL REPORT TO CWS ON BIRDS SALVAGED, RELEASED AND DECEASED
"BECAUSE OF THE IMPORTANCE OF SABLE ISLAND AND THE GULLY, SPECIAL ATTENTION WILL BE PAID TO THESE AREAS IN THE DEVELOPMENT OF MONITORING." ⁴	SEABIRDS SABLE ISLAND	 AIR QUALITY/ EMISSIONS ANALYSIS BEACHED SEABIRD SURVEYS

Table 1-1: EA Predictions Relevant To 2016 EEM Program

¹Unless otherwise noted, the predictions apply only to routine construction and operations activities (i.e., not accidental events) as stated in the Executive Summary of the SOEP–EIS Vol. 3.

²Only offshore-related VECs assessed under the marine environment were considered

³ As stated in Section 5.2.1.9 of the SOEP – EIS Vol. 3.

⁴ As stated in Section 7.4 of the SOEP – EIS Vol. 3.

The EEM components were based on valued ecosystem components (VECs) identified during the EA process and components identified by Sable Offshore Environmental Effects Monitoring Advisory Group (SEEMAG) and the EEM study team.

The SOEP offshore EEM is intended to be adaptive, efficient and meaningful. Therefore, the monitoring plan is adjusted annually by dropping or adding monitoring components or sampling sites with the prior approval of the CNSOPB EEM Review Committee based on the latest monitoring results and scientific information, or to address new Project activities.

1.3 EMISSIONS AND DISCHARGES

The five platforms generate atmospheric, liquid, and solid wastes. Table 1-2 lists various emissions from the Thebaud, Venture, South Venture, North Triumph, and Alma platforms with the exception of solid wastes. Various solid and liquid wastes generated offshore at SOEP platforms are skipped via supply vessel to shore for treatment and disposal at approved facilities in Nova Scotia or elsewhere in Canada depending on the type of waste. This EEM program evaluates produced water and air emissions. No drilling activities took place in 2016 that would cause any changes in steady state emissions from the SOEP facilities. A field-wide two week planned maintenance shutdown occurred during late September/early October.

Table 1-2 provides a summary of the main sources of emissions on each platform.

PLATFORM	OPERATION STATUS	POTENTIAL EMISSION SOURCES
THEBAUD {LAT:	STEADY-STATE	FLARE (~12E3M3/DAY)
43.53 Long: -	PRODUCTION OPERATIONS	
60.12}	THROUGH 2016	PRODUCED WATER (19.7 MG/L OIW
		AVG. 2015)
		DRAINS WATER DISCHARGES (VARIES
		BY WEATHER)
		NATURAL GAS TURBINES
		EMERGENCY DIESEL GENERATORS
VENTURE {LAT:	STEADY-STATE	VENTING (~0.8E3M3/DAY)
43.59 Long: -	PRODUCTION OPERATIONS	PRODUCED WATER (15.9 MG/L OIW
59.37}	THROUGH 2016	AVG. 2015)
		Drains water discharges
		(BROUGHT TO HRM FOR RECYCLING
		AND DISPOSAL OR TREATED
		OFFSHORE VIA CRUDESORB
		FILTRATION ON THEBAUD)
		DIESEL GENERATORS
NORTH TRIUMPH	STEADY-STATE	VENTING (~0.09E3M3/DAY)
{Lat: 43.35	PRODUCTION OPERATIONS	PRODUCED WATER ROUTED TO
LONG: -59.51}	THROUGH 2016	THEBAUD PLATFORM
		Drains water discharges
		(BROUGHT TO HRM FOR RECYCLING
		AND DISPOSAL OR TREATED
		OFFSHORE VIA CRUDESORB
		FILTRATION ON THEBAUD)
		DIESEL GENERATORS
Alma {Lat:	STEADY-STATE	VENTING (~0.6E3M3/DAY)
43.35, LONG: -	PRODUCTION OPERATIONS	PRODUCED WATER (7.5 MG/L OIW
60.12}	THROUGH 2016	AVG. 2015)

Table 1-2: Summary of Emissions Sources on all Platforms

		DRAINS WATER DISCHARGES (VARIES
		BY WEATHER)
		DIESEL GENERATORS
SOUTH VENTURE	STEADY-STATE	VENTING (~0.5E3M3/DAY)
{Lat: 43.59	PRODUCTION OPERATIONS	PRODUCED WATER (6.8 MG/L OIW
LONG: -59.37}	THROUGH 2016	AVG. 2015)
		DRAINS WATER DISCHARGES (VARIES
		BY WEATHER)
		DIESEL GENERATORS

1.4 PROJECT ACTIVITIES

Routine production activities were conducted during 2016 at the Thebaud, North Triumph, Alma, Venture and South Venture platforms.

1.5 GOALS AND OBJECTIVES

This EEM program involves the collection of repeated measurements of environmental variables to detect changes directly or indirectly attributable to production discharges. The EEM program is undertaken with the following primary objectives:

- to verify whether the effects of discharging production wastes into the marine environment occur within the zones of influence predicted by the EA report;
- to evaluate the effectiveness of mitigation and identify the need for improved or altered mitigation; and
- to provide an early warning of undesirable change in the environment.

1.6 SCOPE

This report focuses on the EEM program of the Tier I and Tier II development and includes the natural gas well fields at Venture, South Venture, Thebaud, Alma, and North Triumph. (As the North Triumph platform does not discharge produced water, no sampling occurs at this platform). Potential effects of Project activities evaluated in the 2016 EEM program included produced water, air emissions (flaring observations and air quality analysis), and birds/seabirds. (Table 1-3).

Location	Environmental Component	Type of Monitoring/Analysis	2016 Program
Thebaud	Seabirds	 Daily monitoring for birds found on platform (stranded/perished). 	 Annual report to CWS on birds salvaged, released and deceased
	Air Quality	Visual observations of the Flare Plume from platform. Flare plume observations provided to EMC contractor for analysis with Sable Island Air Quality Monitoring data.	 Record flare plume characteristics twice daily (using EC supplied smoke chart) along with concurrent weather conditions on the platform Investigate spikes in air monitoring data while checking wind direction/wind speed to identify potential correlation with facility operations.
Sable Island	Seabirds	Monthly Beached Bird Surveys	 Surveys to be carried out and report to be prepared by Zoe Lucas, resident biologist on Sable Island. Relate to historical time series data.
Thebaud, Venture, South Venture and Alma	Produced Water	Toxicity analysis as per OWTG	 Relate to OWTG expectation Continue use of same bioassay species
Thebaud, Venture, South Venture and Alma	Produced Water	Chemistry analysis as per OWTG	 Relate to OWTG expectation (annual sample from each platform).

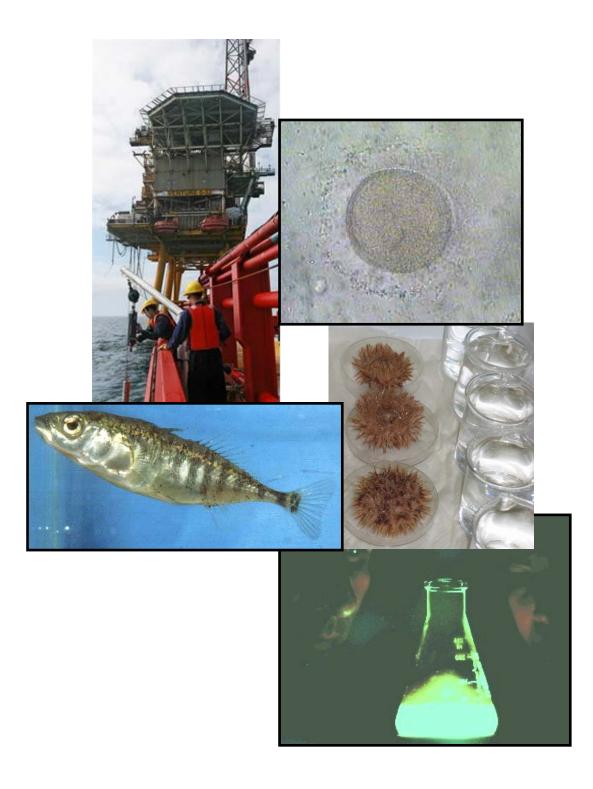
Table 1-3: 2016 Sable Offshore EEM Program

The surveys undertaken in 2016 continued to investigate or support data collection to later analyze potential effects of the development on:

- water quality of the receiving environment with respect to toxicity and chemical characterization;
- air quality from emissions from the offshore platforms on Sable Island; and
- the presence of the platforms on sea and land based birds.

1.7 REPORT ORGANIZATION

This report consists of an assemblage of component study reports relating to specific EEM requirements. Each component study report was prepared using a concise format agreed to by the C-NSOPB EEM Review Committee to facilitate information summarization and readability. To the extent possible, references were provided for detailed methodological and analytical procedures.


1.8 END OF FIELD LIFE MONITORING

As noted in previous EEM reports, ExxonMobil Canada has initiated preliminary evaluations for the end of Sable field life. Included in these evaluations is consideration of the scope of an environmental monitoring plan. Such a plan will be based upon SOEP EIS predictions, previous monitoring and historical discharges into the environment. EMC will continue to keep the CNSOPB apprised of the progress of the preliminary evaluations.

1.9 REFERENCES

DFO, 2003. Workshop on Offshore Oil and Gas Environmental Effects Monitoring, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, May 26-30, 2003, Environmental Science Research Fund Report.

2. PRODUCED WATER CHEMISTRY AND TOXICITY

2.1 RATIONALE & BACKGROUND

Produced Water (PW) includes formation water, injection water and process water that is extracted along with oil and gas during petroleum production. At offshore production installations, this water is separated from the petroleum process stream and, after treatment, is discharged to the marine environment.

Based on comprehensive literature reviews of national and international monitoring results, potential toxic concentrations appear restricted to less than 2 km (Bakke et al. 2013) with acute toxicity within 500 m (Neff et al. 2012) of platform sites. The risk of widespread, long term impact from the operational discharges such as PW on populations and the ecosystem is presently considered low (Bakke et al. 2013).

With respect to SOEP specifically, a DFO COOGER research study in 2009 (DFO COOGER, 2010) showed that potential contaminants in the relatively small PW discharges¹ from the SOEP central processing platform (Thebaud) and Venture satellite platform were diluted rapidly² to no-effects concentration levels within a few metres³ of the mouth of the discharge caisson located below the sea surface. The resulting narrow plume of PW shifts primarily under the influence of the ebb and flow of tidal currents. The overall conclusion of the study was that "…*the toxicity of produced water from the Venture/Thebaud platforms is not considered an environmentally relevant factor of concern*".

Based largely on these findings and previous SOEP EEM results, the scope of the 2016 program focused on Environmental Compliance Monitoring (ECM)⁴ which was consistent with PW monitoring and characterization requirements as outlined in the Offshore Waste Treatment Guidelines (OWTG, 2002 & 2010). While EMCP provided condensate samples to DFO (COOGER, BIO) in 2013 for ESRF-funded laboratory research studies⁵, they were not requested to provide any produced water samples in 2016 as COOGER is no longer conducting research with produced water and in particular no work related to the biological effects of contaminants.

¹The discharge rates of PW at SOEP platforms are one or two orders of magnitude less than at other East Coast offshore facilities. For example, the average daily discharge rates (m3) for SOEP platforms in 2016 are as follows: Venture (150), Thebaud (125), S. Venture (5) and Alma (15). Average daily discharge rates for other former, current and proposed East Coast projects respectively (2010) are as follows: previous COPAN (18,140); current Hibernia (19,000), proposed Deep Panuke (6,050) and Hebron (45,000).

² Organic constituents of SOEP produced water have also been shown to be highly volatile and therefore readily vaporize prior to discharge (Section 6.2.14; DFO COOGER, 2010), (Terrens et al. 1996)

³ Predicted using the DREAM (Dose-related Risk and Effect Assessment Model)

⁴ With respect to PW, the annual SOEP EEM report has typically summarized the results of EEM, ECM and any PW-related research studies.

⁵ The study is a joint project between DFO (COOGER) and the National Research Council looking at methods to evaluate the biodegradation of natural and chemical dispersion of crude oil (from Grand Banks) and Scotian Shelf condensate.

In 2016, all facilities were shut-in and did not discharge PW from September 15th to October 3rd due to a planned field-wide shut-down. The practice of cycling some wells (shutting in to allow pressure build up) results in variable water production volumes.

Toxicology bioassay analyses using the $Microtox^6$, the Sea Urchin Fertilization⁷, and the Threespine Stickleback⁸ tests were carried out as in previous years as per guidance from Harris Industrial Testing Ltd. in consultation with the Environment and Climate Change Canada Toxicology Laboratory in Moncton, NB. Each toxicity test was conducted contemporaneously with chemical characterization tests described below. There is no pass/fail stipulation for any of these acute toxicity tests.

The previous OWTG (2002) did not specify threshold limits for any chemical parameters to be tested. Chemical parameters measured were: aluminum, ammonium, antimony, arsenic, barium, boron, cadmium, chromium, cobalt, copper, iron, lead, magnesium, mercury, molybdenum, nickel, phosphorus, selenium, silver, strontium, sulphur, thorium, tin, uranium, vanadium, and zinc and total petroleum hydrocarbons (TPH).

The performance target with respect to TPH monitoring under the OWTG (2010) are a 30-day weighted average of oil in discharged PW (OIW) that does not exceed 30 mg/L and a 24-hour average of oil-in-water, as calculated at least twice per day, that does not exceed 44 mg/L. There were no exceedences of OWTG for OIW in 2016.

The CNSOPB conducted an inspection of the produced water system on the Thebaud platform in November 2016. This included:

- A review of the documents describing EMCP's produced water sampling, analysis and reporting procedures.
- A site visit and review of the produced water system on the Thebaud platform.
- Witnessing produced water sampling procedures on Thebaud.
- Witnessing Lab analysis procedures in the Thebaud laboratory.

No non-conformities requiring corrective action were found.

⁶ The basic technology of the Microtox Test System is based upon the use of luminescent bacteria, specifically the strain *Vibrio fisheri* NRRL B-11177, to measure toxicity from environmental samples. Luminescent bacteria produce light as a byproduct of cellular respiration. Cell respiration is fundamental to cellular metabolism and all associated life processes. Bacterial bioluminescence is tied directly to cell respiration, and any inhibition of cellular activity (toxicity) results in a decreased rate of respiration and a corresponding decrease in the rate of luminescence. The more toxic the sample, the greater the percent light loss from the test suspension of luminescent bacteria. Bacterial bioluminescence has proved to be a convenient measure of cellular metabolism and consequently, a reliable sensor for measuring the presence of toxic chemicals in aquatic samples. Strain 11177 was originally chosen for the acute and chronic tests because it displayed a high sensitivity to a broad range of chemicals.

⁷ The Echinoid Fertilization test is a common marine bioassay used for routine environmental monitoring, investigative evaluations, and/or regulatory testing of effluents and sediment pore waters. The test organism was the sea urchin, *Lytechinus pictus*.

⁸ The acute lethality test with seawater-acclimated Threespine Stickleback (*Gastreostreus acculeatus*) (TS) has been used by Environment Canada and several Canadian laboratories concerned with evaluating the potential toxic effects of effluents discharged into estuarine or marine environments.

2.2 GOALS

- Review the CNSOPB PW ECM results for 2016 in light of requirements specified in the OWTG (2010);
- Review 2016 ECM results in light of historical monitoring and characterization data at SOEP facilities;
- Recommend a PW monitoring strategy for 2017 in light of combined ECM, EEM and research findings at SOEP facilities and internationally

2.3 **OBJECTIVES**

- Summarize 2016 ECM PW TPH daily monitoring and note exceedences (if any) from OWTG (2010)
- Discuss PW chemical characterization (selected chemicals) of ECM samples in light of historical data.
- Comment on level of toxicity of PW ECM samples based on recognized suite of standard bioassay tests for application to marine discharges.

2.4 SAMPLING PROCEDURES

PW samples, which were supplied by EMC, were collected and analyzed following procedures outlined in tables below and in attached "*Produced Water Sampling Procedures*" provided by SGS (Appendix for Section 2).

	The Lore J. Massault and OO				
Collection Date(s):	Thebaud: November 28				
Chemistry &	Venture: December 7				
Toxicity samples	Alma: December 11				
	South Venture: December 7				
	Note: All samples analyzed within the requisite maximum 3-day holding time				
	allowed				
Platforms:	Thebaud, Venture, Alma, South Venture				
Type of Sample::	Produced water				
Test Sample	Taken directly from the discharge caisson on the platform (prior to overboard				
Locations:	discharge to the marine environment).				
Reference Sample	N/A				
Locations:					
Sample Preparation ⁹ :	Sample Bottles were provided by SGS as follows (see Attachment 2-1):				
	• BTEX/TPH – 2x40ml amber vials (filled to top; no head space) and 1x1L				
	glass bottle (filled approximately 90%)				
	• Metals (dilute and shoot) – 1x250ml plastic (filled approximately 80%)				
	• Mercury – 100 ml amber glass				
	• Ammonia and TKN – 60ml amber glass (filled approximately 80%)				
	 Toxicity sample - HDPE container 				
Sampling QA/QC ¹⁰ :	 Each bottle was supplied by the SGS laboratory to ensure the integrity of 				
	the samples.				
	 PW samples were stored in a sealed cooler with a frozen gel pack to 				
	keep samples cool. They were shipped to shore by helicopter following				
	sample collection. The samples were then picked up by SGS for chemical				
	testing.				
	• For toxicity testing, PW was collected in a HDPE container on each platform. The container was shipped to shore by helicopter following				
	sample collection. The samples were collected from the heliport by				
	Harris Industrial Testing Service (HITS). Subsamples were extracted				
	from each, and then shipped to appropriate subcontractors (see Section				
	2.5) for specific toxicity testing. In all cases, testing was carried out				
	within the maximum holding time for each specific toxicology parameter				
	(3-5 days).				

⁹ Cougar Helicopters do not currently allow any preservatives on flights offshore. Preservatives are added upon receipt at the laboratory, if necessary.

¹⁰ The QA/QC procedures for the each laboratory involved with the various testing included the use of duplicates, method blanks, surrogates, spikes, chain of custody, and certified reference materials where applicable.

2.5 ANALYTICAL METHODS

Contractors:

- **1.** Harris Industrial Testing Service Ltd. (Threespine Stickleback toxicology)
- 2. AquaTox Testing & Consulting Inc. (Microtox and Sea Urchin Fertilization toxicology)
- **3.** SGS (Chemical Analysis)

Table 2.2 Parameters Analyzed:

Parameters	Analysis Method
Microtox	Environment Canada Protocol EPS 1/RM/24 1992 with 1997 Amendments
Sea Urchin Fertilization	Environment Canada EPS 1/RM/27, 2nd Edition (February 2011)
Threespine Stickleback	Environment Canada Protocol EPS/1/RM/10 1990 with 2000 Amendments
ТРН	CCME, Standard Methods 5520
Chemical Characterization	Standard Methods 3125
Sulphur	EPA 200.7
Thorium	EPA 200.8
Mercury	Standard Methods 3112 B
Ammonia-N	Standard Methods 4500-NH3 G
Total Kjeldahl Nitrogen	Standard Methods 4500-N0RG D

2.6 RESULTS

Table 2.3 PW Toxicity Characterization

Toxicity Test		(95% confidence	bition Threshold Val limits in brackets)	
	Thebaud	Venture	Alma	South Venture
Threespine Stickleback Fish	<u>Nov. 28</u>	December 7	<u>December 11</u>	<u>December 7</u>
Toxicity	17.7%	4.4%	50.0%	66.0%
(LC50 ¹¹)	(12.5-25.0)	(3.1-6.3)	(40.2-62.3)	(57.8-75.3)
Microtox (IC50 ¹²)	1.47% (1.29-1.66)	2.2% (1.75-2.77)	3.94% (3.58-4.33)	19.2% (17.9-20.5)
Sea Urchin Fertilization (IC25 ¹³)	15.3% (11.4-19.2)	0.12% (0.10-0.14)	44.3% (26.0-75.1)	>68.2%
Salinity(‰) ¹⁴	0.67	250	8.7	0.7
Oil-in-Water Mg/L ¹⁵)	18.9	13.6	3.6	4.9

 ¹¹ LC50 is the medial lethal concentration, i.e., the concentration is estimated to be lethal to 50% of the test organisms
 ¹² IC50 is the concentration at which growth or activity is inhibited by 50%
 ¹³ IC25 is the concentration at which growth or activity is inhibited by 25%

¹⁴ Normal seawater salinity values range from 28 - 32%.

¹⁵ Thebaud lab results -24 hour avg.

Sampling Date (2016)		28 November	7 December	11 December	7 December
Chemical Parameters as per OWTG (2002)	Units	THEBAUD	VENTURE	ALMA	SOUTH VENTURE
Thorium	mg/L	ND	ND	ND	ND
Mercury	mg/L	ND	ND	ND	ND
Aluminum	mg/L	ND	27.0	ND	ND
Arsenic	mg/L	ND	ND	ND	ND
Barium	mg/L	2.45	821	10.9	3.81
Boron	mg/L	ND	15.3	3.49	0.468
Cadmium	mg/L	ND	0.003	ND	ND
Chromium	mg/L	ND	0.066	ND	ND
Cobalt	mg/L	ND	ND	ND	ND
Copper	mg/L	ND	0.068	ND	ND
Iron	mg/L	ND	223	11.9	ND
Manganese	mg/L	ND	45.2	0.207	ND
Magnesium	mg/L	ND	1500	36	ND
Lead	mg/L	ND	0.105	ND	ND
Molybdenum	mg/L	ND	ND	ND	ND
Nickel	mg/L	ND	0.777	ND	ND
Phosphorus	mg/L	0.042	0.450	ND	ND
Selenium	mg/L	ND	ND	ND	ND
Strontium	mg/L	1.97	2080	41.5	3.89
Sulphur	mg/L	0.5	ND	2.26	ND
Thorium	mg/L	ND	ND	ND	ND
Uranium	mg/L	ND	ND	ND	ND
Vanadium	mg/L	ND	ND	ND	ND
Zinc	mg/L	ND	3.11	3.11	ND
TPH	mg/L	18.9	13.6	3.6	4.9
Ammonia	mg/L	19.4	380	39.1	70.1
TK Nitrogen	mg/L	9.0	205	21	34.9

Table 2.4PW Chemical Characterization¹⁶

¹⁶ Bolded values for selected chemical parameters were plotted below (see Section 2.7.2) to facilitate comparisons between platforms over the sampling period (2005-2016).

2.7 DISCUSSION

2.7.1 Toxicity 17

The OWTG (2002) do not have pass/fail criteria, however most effluent discharge regulations stipulate that if an effluent has greater than 50% mortality at the 100% concentration it fails. Based on this, PW at all four platforms would be considered toxic to Threespine Stickleback (TS). There are no pass/fail criteria available for Microtox and Echinoid fertilization toxicity tests (Gary Harris, HITS Ltd. pers. comm.). Toxicity results from each of the three bioassays carried out for samples collected in 2016 are given in Table 2.3 and discussed below. Trends in toxicity concentrations for each of the three tests over the entire sampling period (2005-16) are shown in Figures 2.1 - 2.3.

Thebaud:

TS

There was 100% mortality in each of the 100, 50 and 25% concentrations. When the sample was diluted to the 50% concentration, the subsequent salinity at that concentration was already within the range specified as suitable for Threespine stickleback testing (>10‰). Since 100% mortality occurred in the 50% concentration as well as in the 25% concentration, and because Threespine stickleback have not historically demonstrated increased mortality due to low salinity levels (<5‰), mortality was not likely due to low salinity. Rather, toxicity from petroleum hydrocarbons was a more probable cause of this mortality.

Echinoid Fertilization

In the Echinoid Fertilization test the salinity for all concentrations was adjusted to 28‰. Toxicity (i.e. fertilization inhibition) occurred at the 15.3% concentration. Based on these results, inhibition is likely the result of toxicity from petroleum hydrocarbons. All validity criteria for this test were met.

Microtox

The salinity for all concentrations was adjusted to >20%. Since the IC50 value was 19.2%, inhibition was likely a result of toxicity from petroleum hydrocarbons

¹⁷ The statistical method used to compare LC50 values was the pairwise comparison test delineated in Sprague & Fogels (1977).

Venture:

<u>TS</u>

One additional concentration in the TSS LC50 test at the lower end (3.13%) was tested in order to better assess the sample's toxicity at lower salinity levels. Salinity was slightly above the normal range even after the sample was diluted to the 3.13% concentration (36.7‰). Full mortality occurred in the 6.25% concentration (40‰), but there was no mortality in the 3.13% concentration. From these results, mortality may have occurred at the higher concentrations due to high salinity, toxicity from petroleum hydrocarbons, or a combination of both.

Echinoid Fertilization

The salinity level of this sample fell within the normal range at the 0.81% dilution concentration. Test toxicity (i.e. fertilization inhibition) commenced at the statistically estimated concentration of 0.12%. From this result, inhibition likely occurred due to toxicity from petroleum hydrocarbons rather than high salinity alone.

Microtox

Based on the salinity values reported in the above Echinoid Fertilization test, it can be extrapolated that normal salinity levels were reached at or below the 1.56% concentration. Significant inhibition occurred in the Microtox test at the statistically estimated concentration of 2.2%. Therefore, it would appear that significant inhibition occurred above the threshold at which the salinity was diluted to a normal level. From these results, inhibition likely occurred at the higher concentrations due to high salinity, toxicity from petroleum hydrocarbons, or a combination of both.

Alma:

TS

There was 100% mortality in the 100% concentration and 50% mortality in the 50% concentration. When the sample was diluted to the 50% concentration, the subsequent salinity at that concentration was already within the range specified as suitable for Threespine stickleback testing (>10‰). Since mortality occurred in the 50% concentration, and because Threespine stickleback have not historically demonstrated increased mortality due to low salinity levels (<5‰), mortality was not likely due to low salinity. Rather, toxicity from petroleum hydrocarbons was a more probable cause of this mortality.

Echinoid Fertilization

In the Echinoid Fertilization test the salinity for all concentrations was adjusted to 30‰. Toxicity (i.e. fertilization inhibition - IC25) occurred at the 44.3% concentration. Based on these results, inhibition is likely the result of toxicity from petroleum hydrocarbons. All validity criteria for this test were met.

Microtox

The salinity for all concentrations was adjusted to >20%. Since the IC50 value was 3.94%, inhibition was likely a result of toxicity from petroleum hydrocarbons.

South Venture:

<u>TS</u>

There was 100% mortality in the 100% concentration and only 10% mortality at the 50% concentration. When the sample was diluted to the 50% concentration, the subsequent salinity at that concentration was already within the range specified as suitable for Threespine stickleback testing (>10‰). Threespine stickleback have not historically demonstrated increased mortality due to low salinity levels (<5‰) but these results do not conclusively indicate that mortality was not due to low salinity levels. Toxicity from petroleum hydrocarbons was a more probable cause of this mortality, however toxicity may have also been caused by a combination of low salinity and petroleum hydrocarbons.

Echinoid Fertilization

In the Echinoid Fertilization test the salinity for all concentrations was adjusted to 30‰. The maximum concentration tested was 68.2% due to the need for the addition of Hypersaline Brine to the effluent in order to adjust the salinity. Toxicity (i.e. fertilization inhibition) did not occur within the range of tested concentrations, meaning that the effluent was not toxic at or below 68.2%.

Microtox

The salinity for all concentrations was adjusted to >20%. Since the IC50 value was 19.2%, inhibition was likely a result of toxicity from petroleum hydrocarbons.

Figure 2.1 Three-spine Stickleback Bioassay

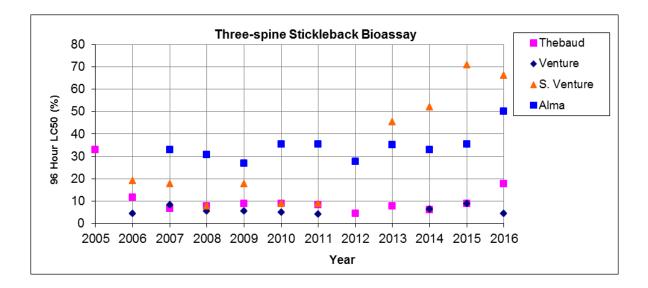
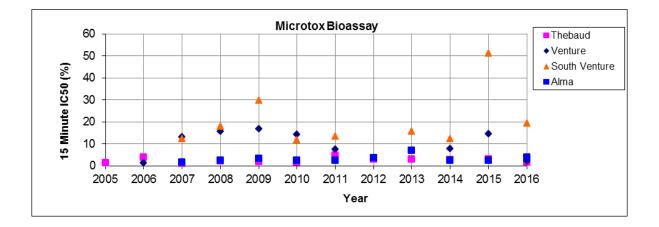
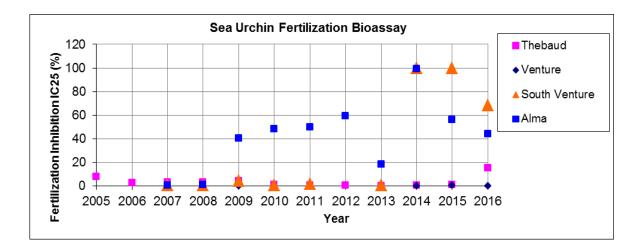
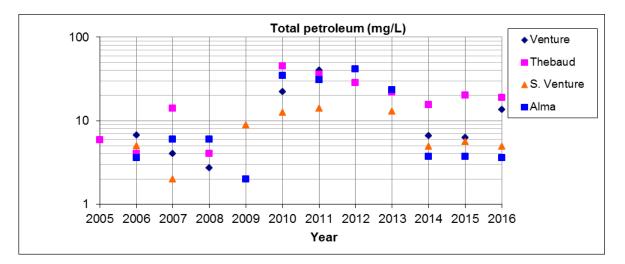


Figure 2.2 Microtox Bioassay


Figure 2.3 Sea Urchin Fertilization Bioassay

2.7.2 Chemistry

Daily average TPH values at the Thebaud, Alma and South Venture platforms taken coincident with samples taken for toxicity evaluation in 2016 (Table 2.4; Figure 2.4) were well below the 24-hour threshold limit (i.e., 44 mg/L) for TPH specified in the OWTG (2010)¹⁸. The 2016 TPH values at all four platforms have continued the general trend toward relatively lower values in recent years (since 2010) (Figure 2.4).

¹⁸ <u>http://www.cnsopb.ns.ca/sites/default/files/pdfs/owtg_redraft.pdf</u>

Figure 2.4 TPH (PW Chemical Characterization Samples)

As in the past, the Venture platform discharged the highest volume of PW in 2016. The central processing platform's (Thebaud)¹⁹ discharge rates have increased by an order of magnitude over previous years. Based on daily measurements of TPH at Thebaud and on an opportunistic basis on unmanned platforms in 2016 (Table 2.5), there were no exceedances of the OWTG (Section 2.1) for OIW (i.e., TPH) concentration. Besides differences in reservoir (i.e., geotechnical) characteristics, other factors which may contribute to variation in TPH concentrations in PW samples include time of sampling, efficiency of the onboard treatment system, and operational upsets. The practice of cycling wells began in 2015 which may also have resulted in variable water production volumes. Variation in sand production in the reservoir is also known to influence the effectiveness of the treatment systems.

Platform	Total Volume (m3)	Avg. Daily Concentration (mg/L)
Thebaud	45048	19.7
Alma	5396	7.5
Venture	53650	15.9
S. Venture	1312	6.8

Table 2.5 Total annual (2016) PW Volumes/ Avg. Daily TPH Values (2016)²⁰

¹⁹ Produced water from NT is still routed to Thebaud for processing and discharge and therefore included in the total volume given for Thebaud (Table 2.5).

 $^{^{20}}$ All facilities were shut-in and did not discharge PW between September 15 and October 3 due to a planned field-wide shutdown. The practice of cycling wells has begun which results in variable water production volumes. There were <u>no</u> <u>exceedances</u> of OWTG for OIW in 2016.

While petroleum hydrocarbon compounds such as PAHs and phenols and heavy metals such as lead are known to be toxic, they are likely to have contributed little to the overall toxicity of PW due to their low concentrations. In 2016, concentrations of most non-organic PW constituents were non-detectable (ND) or very low (Table 2.4). Many key non-organic constituents have been very low (<10 mg/L) (i.e., lead & zinc) or have shown a general downward trend (i.e., barium, boron, iron, and ammonia) in recent years (since 2010) at most locations most notably at Thebaud (Figure 2.6). With few exceptions over the entire sampling period, the lowest values of selected chemical constituents have been recorded at the Alma platform. The two most potentially toxic constituents, iron and ammonia, have been found in relatively high concentrations in Thebaud and Venture PW samples (Figure 2.6) which may explain in part the relatively high toxicity in annual laboratory bioassay testing of PW samples taken on those platforms (Figures 2.1-3 incl.) (DFO COOGER, 2010).

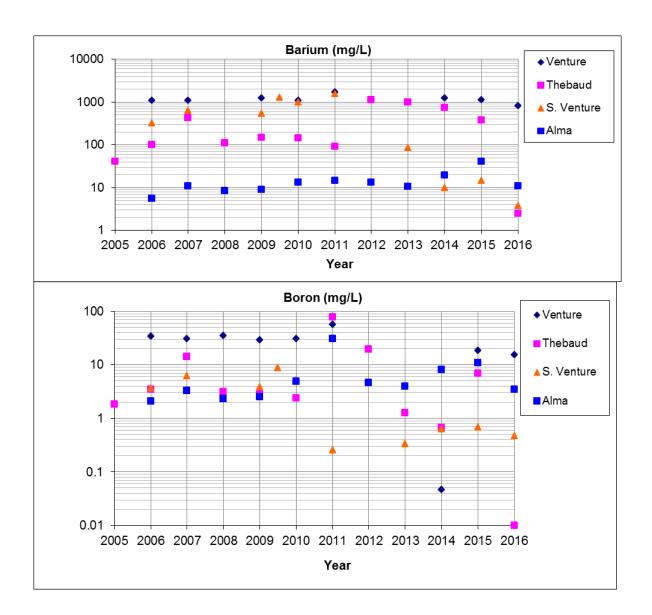
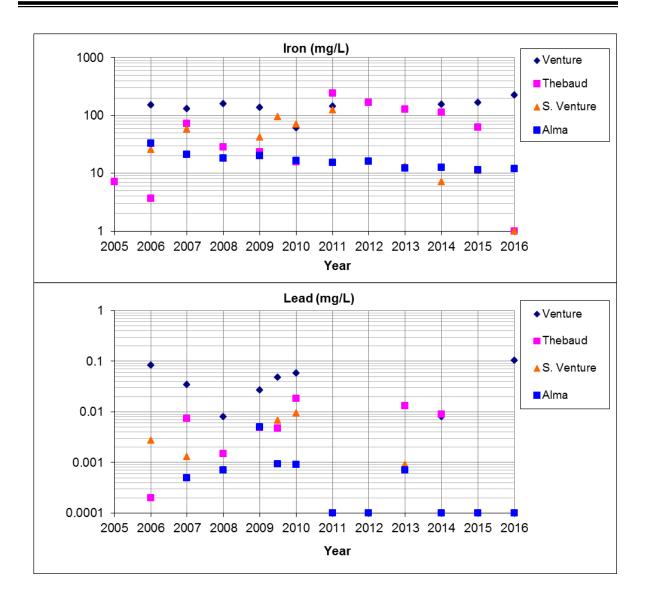
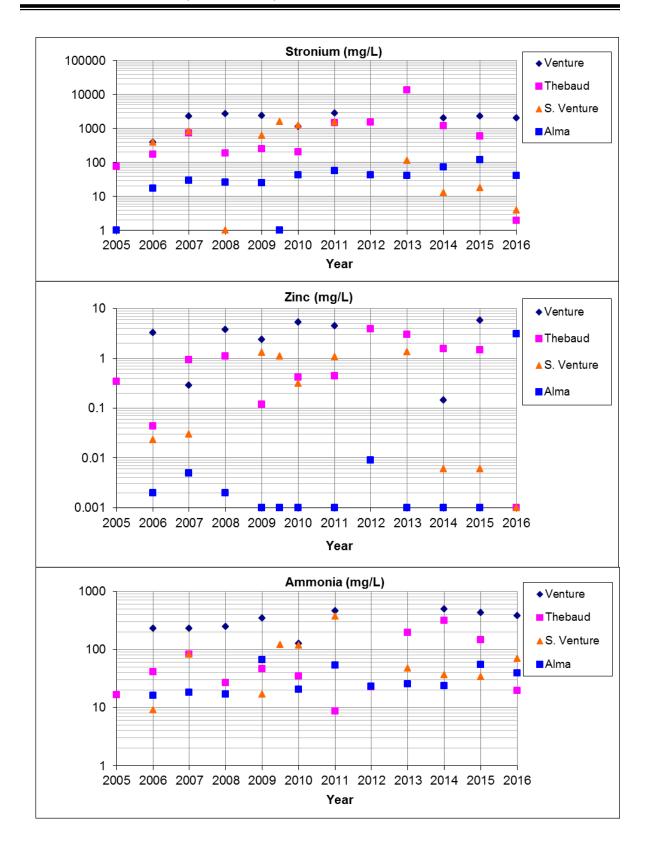




Figure 2.6 Non-organic PW Constituents

2.8 PW MONITORING PLAN FOR 2017

EMCP will strive to be consistent with the performance targets for the treatment and monitoring of PW outlined in the latest version of the OWTG (15 December, 2010). The results of the sampling and analysis program, including the individual sample values, the 24-hour performance metric, the 30-day volume-weighted average, and the total volume of produced water discharged, for each day of discharge, will be reported to the CNSOPBmonthly.

In regard to PW characterization, EMCP proposes to discontinue annual toxicity testing of PW samples for the following reasons:

Despite the general observed toxicity of PW at the various SOEP offshore platforms (from petroleum hydrocarbons and in some cases in combination with high/low salinity levels) based on laboratory testing since 2005, the potential for negative environmental direct and indirect effects on the marine environment is considered extremely low due to the:

- Rapid dilution to 'no-effects' concentration levels within a few metres of the platforms (DFO, 2010),
- Low density of operational gas platforms in the Sable Island area, and the
- Low intensity of other marine activities such as commercial fishing, marine transportation, military activity, tourism, etc. (DFO, 2012) on Sable Island Bank.

2.9 REFERENCES

Bakke, T., J. Klungsoyr, & S. Sanni, 2013. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Mar. Env. Res. 92: 154-169.

DFO COOGER, 2010. Characteristics and Dispersion of Produced Water Discharged from the Venture/Thebaud Offshore Platforms on the Scotian Shelf. Report prepared for AMEC Earth and Environmental Ltd and ExxonMobil Canada East.

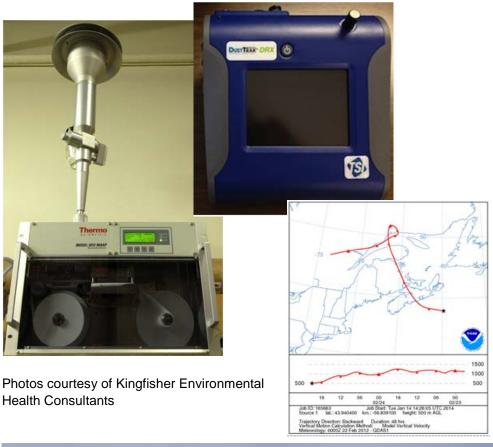
Environment Canada, Dec. 1992 (with Nov 1997 amendments) Biological Test Method: Fertilization Assay using Echinoids (Sea Urchins and Sand Dollars) EPS/1/RM/27. Environmental Protection, Ottawa, ON 97 pp.

Environment Canada, March 1984 Manual for Spills of Hazardous Materials

Environment Canada, 1992 Biological Test Method: Toxicity Test using Luminescent Bacteria (Photobacterium phosphoreum) EPS/1/RM/24 Environmental Protection, Ottawa, ON 83 pp.

Environment Canada, 1990 Biological Test Method: Acute Lethality Test using Threespine Stickleback. EPS/1/RM/10 Environmental Protection, Ottawa, ON

J. Neff, K. Lee & E.M. DeBlois, 2012. Produced Water: Overview of Composition, Fates, and Effects, [In Lee and Neff, Editors, 2012, Produced Water: Environmental Risks and Advances in Mitigation Strategies - Proceedings of the International Produced Water Conference: Env Risks and Advances in Mitigation Technologies St. John's, Newfoundland and Labrador, Canada October 17 - 18, 2007]


OWTG, 2002/2010, National Energy Board, Canada-Newfoundland Offshore Petroleum Board, Canada-Nova Scotia Offshore Petroleum Board, August 2002, December 2010, Offshore Waste Treatment Guidelines.

Sprague, J.B., 1973, The ABC's of Pollutant Bioassay Using Fish, Biological Methods for the Assessment of Water Quality, ASTM STP 528, American Society for Testing and Materials, pp. 6 - 30

Sprague JB & Fogels A (1977) Watch the y in bioassay. Proceedings of the r3rd aquatic toxicity workshop held in Halifax, Nova Scotia, November 2-3, 1976. Surveillance report EPS-5-AR-77-1

Terrens, G.W, Tait, R.D. 1996, Monitoring Ocean Concentrations of Aromatic Hydrocarbons from Produced Formation Water Discharges to Bass Strait, Australia. SPE 36033, [In Proceedings of the International Conference on Health, Safety and Environment. Society of Petroleum Engineers, Richardson, TX, pp. 739-747]

3. AIR QUALITY

Sable Island photo courtesy of Green Horse Society

ACRONYMS

APS	Aerodynamic Particle Sizer
AS	Air Server
BC	Black carbon
CH4	Methane
ESRF	Environmental Studies Research Funds
GC	Gas Chromatograph
GEM-MACH-10	Global Environmental Multiscale model - Modelling Air quality and
	Chemistry (10 km ² grid cell)
H_2S	Hydrogen Sulfide
O ₃	Ground-level ozone
LRT	Long-Range Transport
MS	Mass Spectrometer
NAPS	National Air Pollution Surveillance network
NMHC	total-Non Methane Hydrocarbons
NO	Nitrogen monoxide
NO ₂	Nitrogen dioxide
NO _x	Nitrogen oxides
PM	Particulate matter
PM _{2.5}	Fine atmospheric particles with a median aerodynamic diameter less than,
	or equal to, 2.5 microns
SO_2	Sulfur dioxide
TD	Thermal Desorber
VOC	Volatile organic compounds
WHO	World Health Organization

EXECUTIVE SUMMARY

Kingfisher Environmental Health Consultants were contracted to complete a number of specific tasks related to air emissions on Sable Island for ExxonMobil Canada Properties (EMCP) that include:

- acquisition of meteorological and air quality data pertaining to monitoring on Sable Island for 2016;
- conducting data analysis and graphing of air quality and meteorological data;
- investigating spikes in air monitoring data, checking wind direction/wind speed and contacting EMC to identify potential correlation with a particular facility's operations, as required.

This air monitoring report covers the following air quality information and metrics measured on Sable Island:

- Ultrafine 3031, APS 3321, O3, H2S, SO2, NOx, BC, and DRX PM_{TSP/10/4/2.5/1}
- temperature, wind direction and wind speed

In 2014, Nova Scotia Environment changed their air quality mandate to focus their attention on air-zones in populated areas of the Nova Scotia mainland. This resulted in a cessation of their management of certain air quality instruments on Sable Island. The instruments that were affected included automatic analyzers/sampler for O3, NOx, H2S, SO2 and also PM2.5 via a MetOne Beta Attenuation Monitor (BAM).

New H₂S, SO₂ and BC instruments were purchased in early 2016. A refurbished O₃ analyzer and a PM_{2.5} (BAM 1020) were installed on Sable Island in Q1 of 2016. Therefore, 2016 had reasonable environmental effects monitoring coverage. This report features data, where available, between January 1st 2016 – December 31st 2016 for the Ultrafine 3031, APS 3321, O₃, H₂S, SO₂, NO_x, BC, and DRX PM_{TSP/10/4/2.5/1}.

The 2016 data completeness for temperature, wind direction and wind speed was 96%, 100% and 99% respectively, which can be considered excellent data capture for these meteorological variables. The mean (min : max) temperature and wind speed was found to be 9.04 (-11.4 : 53.8°C), 25.39 km/h (0 : 84 km/h). The maximum temperature of 53.8°C seems unlikely and suggests there might be a temperature sensor malfunction. It was found that the average wind vector for 2016 was found to be 256°, which is consistent with prevailing winds in the North West (NW) Atlantic.

The BC data completeness for 2016 was only 16.7%, due to late deployment of the instrument (Q3). The mean (min : max $\mu g/m^3$) for BC was 0.955 (0 : 6.59 $\mu g/m^3$). The median BC concentration is similar to that found in Halifax (Gibson et al., 2013). This is surprising given that Sable Island is a remote marine location. It may be a result of on island fossil fuel combustion sources, e.g. aircraft, diesel generators, or long-range transport.

However, with a paucity of BC data it is difficult to determine the exact source of this metric at this time.

The 2016 data completeness for the DRX $PM_{1/2.5/4.0/10}$ and total mass concentration was 98%. The mean (min : max) for the $PM_{TSP/10/4/2.5/1}$ total mass concentration was $PM_1 = 11.7$ (0 : 120 μ g/m³), $PM_{2.5} = 12.5$ (0 : 123 μ g/m³), $PM_4 = 12.8$ (0: 124 μ g/m³), $PM_{10} = 13.0$ (0 : 127 μ g/m³) and TSP = 13.0 (0 : 127 μ g/m³) respectively. There were no threshold or air quality standard breaches for $PM_{2.5}$ in 2016.

Due to various instrument malfunctions, the 2016 data completeness for the APS was 53.64%. The mean (min : max *units* = #) for the APS size fractions particle number counts were <0.523 μ m = 124275 (360 : 1963180 #), 1.486 μ m = 3196 (0 : 86875 #), 2.458 μ m = 615.5 (0 : 23737 #), 3.523 μ m = 141.2 (0 : 8779 #), 5.829 μ m = 12.99 (0 : 2743 #), 7.234 μ m = 3.922 (0 : 1358 #) and 10.37 μ m = 0.558 (0 : 159 #) respectively. The data completeness over the operation period for the UFP particle number counts, in the range 20-30, 30-50, 50-70, 70-100,100-200 and 200-800 nm for 2016 was 93%, which can be considered excellent data capture. The mean (min : max *units* = #) UFP 3031 particle number counts, in the various size ranges, were as follows: 20-30 nm = 328.39 (16.11 : 2197.13 #), 30-50 nm = 361.20 (8.05 : 10023.75 #), 50-70 nm = 228.17 (1.44: 5739.00 #), 70-100 nm = 206.11 (0.75 : 4373.75 #), 100-200 nm = 253.51 (3.98 : 8193.00 #) and 200-800 nm = 43.46 (2.80 : 1077.753 #) respectively.

The data completeness over the operation period for NO_x, O₃ and SO₂ was 67% respectively and 65% for H₂S, which can be considered as insufficient data capture for representative annual data analysis. This low data capture for these metrics was due to the new instruments not being installed until the end of Q1 2016. The mean (min : max *units* = ppbv) NOx, O₃, SO₂ and H₂S were as follows: NO_x = 1.15 (0 : 7 ppbv), O₃ = 25.10 (14 : 42 ppbv), SO₂ = 0.74 (0 : 3 ppbv), H₂S = 0.35 (0 : 6 ppbv) respectively.

There were no threshold or air quality standard breaches for O_3 in 2016. However, there was a spike in H₂S of 6.01 ppbv on 17/07/16. This spike was above the operating threshold value of 3.11 ppbv. However, it was well below the 1-hr Nova Scotia air quality objective of 30 ppbv. This H₂S elevated measurement is obviously linked to the elevated SO₂ level of 3.04 ppbv that occurred on the same day. However, the SO₂ level was below the operational spike threshold of 6.0 ppbv and well below the 1-hr Canada Ambient Air Quality Objectives threshold of 344 ppbv. Scrutiny of the air mass back trajectories for this day showed that air flow passed over both the Deep Panuke and Thebaud platforms preceding and during observations on Sable Island.

On October 5, 2016 there was an elevated level in NO_x of 7.16 ppbv. This happened a few days after the ExxonMobil field-wide maintenance shutdown. The air flow during the elevated measurement observation was directly over the Thebaud platform. Therefore, it could be a possible source. However, NO_x level was below the operational spike threshold set at 17 ppbv and well below the Canada Ambient Air Quality Objective of 213 ppbv.

3.1 RATIONALE & BACKGROUND

Sable Island is one of the most important locations in the world for conducting climate monitoring with weather records dating back to the 1871 (Inkpen et al., 2009; GreenHorseSociety, 2012). Because the Island is 160 km from main land Nova Scotia it can be thought of as a truly marine influenced sampling location. Because of this, it is in the perfect position to monitor emissions from the ocean as well as continental outflow from North America (Inkpen et al., 2009). While sources of anthropogenic PM_{2.5}, VOCs and trace reactive gases are well known, it is recognized that there are still large gaps in knowledge with regards to biogenic emissions of terpenes and other VOC emissions from terrestrial (forest fires and vegetation) and marine sources (phytoplankton and direct emissions from the ocean) that act as pre-cursors of cloud condensation nuclei (CCN), secondary organic aerosols (SOA) and O₃; all of which perturb climate, earth systems and health (Gibson et al., 2013c; Gibson et al., 2013a; Palmer et al., 2013; Gibson et al., 2009b; Gibson et al., 2009a; Monks et al., 2009; Palmer and Shaw, 2005). In addition the transport of nitrogen and sulphur aerosol species from local and upwind continental sources can impact the terrestrial and aquatic flora and fauna on Sable Island {Gibson, 2013 #1204}. Therefore, understanding local and long-range upwind sources of PM_{2.5}, VOCs and trace reactive gases to the Sable Island airshed is vital, not just for local air quality, but from the perspective of climate inventories and climate forcing (Monks et al., 2009).

Two detailed air emission reports have been conducted pertaining to the Sable Island airshed, (Inkpen et al., 2009) and (Waugh et al., 2010). The Environment and Climate Change Canada led ESRF project report "Sable Island Air Monitoring Program Report 2003-2006", identified a knowledge gap in monitoring to adequately identify impacts from the offshore O&G, pointing to the need for enhanced on-island monitoring of industrial emissions, including VOC and PM speciation in the Scotian Shelf Airshed (SSA) (Inkpen et al., 2009). Waugh et al., (2010) mention in their report that some of the short-term spikes in data might be due to local source influences resulting from off-shore oil and gas (O&G) activities in the vicinity of Sable Island.

Sable Island's unique location in the Atlantic ensures that it receives significant transboundary air pollutant flows from areas in the North Eastern US and the Windsor - Québec corridor as well as significant amounts of sea salt (Waugh et al., 2010). Frontal systems have been shown to "push" pollution into narrow "vertical bands" of high concentrations ahead of the front and have been identified as causing relatively large, but short-lived, spikes in air quality data on Sable Island (Waugh et al., 2010). In addition, previous studies have shown that seasonal fluxes of natural marine emissions (terpenes, dimethylsulfide, volatile organic compound) are likely to react in the atmosphere to form secondary O₃ and PM_{2.5} which further contribute to the total air pollution mix on Sable Island (Gibson et al., 2013c; Gantt et al., 2010). Waugh et al., (2010) reported a number of long-range transport (LRT) events that were identified from air mass back trajectories, synoptic charts and maps of air pollution monitoring data in the NE US and E Canada prior to the air mass reaching Sable Island. These air pollution maps were obtained from the US data base AIRNow (http://airnow.gov/) (Waugh et al., 2010).

Personal communication has revealed that in addition to the on-Island diesel generators that generate power, there a number of other on-Island source of $PM_{2.5}$ and trace gases, these include other small generators and trash burning. The practice of trash burning may be causing spikes in observations. There is the potential for trash burning to be miss-assigned as O&G production emissions.

Because of the recommendations of the Inkpen et al., (2009) and Waugh et al., (2010) reports, funding was made available through the Environmental Studies Research Funds (ESRF) for a four year project, the aim of which is to unambiguously apportion the source contribution of the O&G facility operations to the total concentration of VOC's on Sable Island. This ESRF funding was awarded to Drs' Mark Gibson and Susanne Craig, Departments of Process Engineering and Applied Science and Oceanography respectively. This project will also have the value added component of being able to apportion the marine and LRT emissions/pollution impacting the Sable Island airshed. A feature of this project is the live streaming of the continuous monitoring data to a website data display. In addition, threshold concentrations for O&G relevant air pollutants have been set and will alert Encana and EMC in the event of spikes in air pollution concentrations. If this occurs, Dr. Gibson's Atmospheric Forensics Research Group (AFRG) will work in concert with the O&G facility operators to determine if the spike was related to O&G facility activity or a result of another local or LRT source. The ability of O&G facility operators to quickly respond to any air pollution spikes will safeguard air quality, marine ecosystems, marine fisheries, O&G facility operations, as well as O&G occupational health and safety.

The O&G industry has had a presence on the Scotian shelf since the late 1960's (CNSOPB, 1990). Currently, EMC have five fields in operation offshore Nova Scotia: Thebaud, Venture, North Triumph, Alma and South Venture. A platform at Thebaud provides central facilities for gathering and dehydration. A second platform provides compression of the gas from all fields, while a third platform at this location provides wellhead facilities for the Thebaud field itself. Hydrocarbons produced at the four other platforms are transported through a system of subsea flowlines to the Thebaud platform. After dehydration at Thebaud, the raw gas is transported through a subsea flowline to landfall at Goldboro, Nova Scotia, and to a gas processing plant located nearby. There the gas is conditioned by the removal of natural gas liquids (NGLs) to meet high quality sales gas specifications. The sales gas is then shipped to markets in eastern Canada and the northeastern United States, through the Maritimes & Northeast Pipeline (M&NP). NGLs are transported by pipeline to the Point Tupper Fractionation Plant for final processing before being sent to market in the form of propane, butane and condensate (Per. Comm, Environmental Advisor – EMC).

Figure **1** below shows the location of the O&G platforms surrounding Sable Island (source: <u>http://www.cnsopb.ns.ca/pdfs/sable_area_platforms.pdf</u>).



Figure 1. Location of the O&G platforms surrounding Sable Island

	Platform Centre Location - NAD83						
	Geog	UTM (Z	one 20)				
Platform Name	Latitude	Northing	Easting				
Thebaud	43° 53' 28.4'' N	60° 11' 57.2'' W	4863604.8	724963.3			
Thebaud Process Jacket	43° 53' 30.8'' N	60° 12' 00.0'' W	4863676.7	724898.3			
Venture	44° 01' 59.8'' N	59° 34' 54.3'' W	4881245.1	773902.9			
North Triumph	43° 41' 56.6'' N	59° 51' 13.6'' W	4843261.4	753522.2			
Alma	43° 35' 47.1'' N	60° 41' 19.3'' W	4829644.9	686560.9			
South Venture	43° 59' 50.6'' N	59° 37' 38.6'' W	4876899.3	770420.7			
Deep Panuke	43° 48' 45.704" N	60° 41' 18.126" W	4853666.9	685917.2			

	Platform Centre Location - NAD27						
	Geo	Geographic					
Platform Name	Latitude	Latitude Longitude					
Thebaud	43° 53' 28.1'' N	60° 11' 59.9'' W	4863377.6	724909.9			
Thebaud Process Jacket	43° 53' 30.5'' N	60° 12' 02.7'' W	4863449.5	724844.9			
Venture	44° 01' 58.0'' N	59° 34' 12.5'' W	4881019.4	773848.6			
North Triumph	43° 41' 56.4'' N	59° 51' 16.4'' W	4843035.7	753467.9			
Alma	43° 35' 46.8'' N	60° 41' 22.0'' W	4829417.0	686507.0			
South Venture	43° 59' 50.4'' N	59° 37' 41.4'' W	4876673.5	770366.4			
Deep Panuke	43° 48' 45.439" N	60° 41' 20.804" W	4853441.1	685863.0			

Table 1. Geographic locations of the O&G platforms surrounding Sable Island

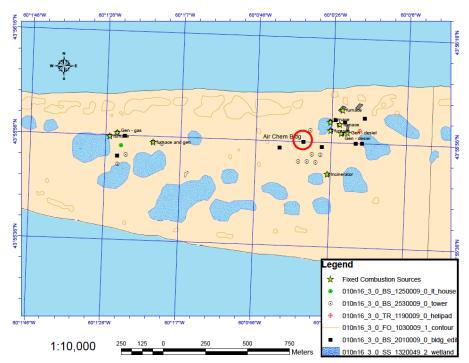


Figure 2. Location of facilities and on-Island combustion sources on Sable Island.

3.2 GOALS

The goal of the air quality monitoring component of the EEM program is to collect information on potential effects originating from the offshore platforms that may affect Sable Island or that can be monitored from the island. Sable Island provides a unique platform upon which to augment the offshore EEM program.

3.3 OBJECTIVES

Acquire a better understanding of both ambient air concentrations in the Sable area and quantitatively identify any possible effects from offshore operations, while taking into consideration localized emission sources on Sable Island itself including air traffic to and from the island, diesel electric supply and waste incinerations at the research station.

3.4 2016 AIR QUALITY MONITORING ON SABLE ISLAND

3.4.1 Nova Scotia Environment, Sable Island, Air Quality Monitoring and Reporting

From January 2015, Nova Scotia Environment no longer manage the criteria air pollution measurements on Sable Island. In the interim, this has since reverted to Dr. Mark Gibson at Dalhousie University in collaboration with Environment and Climate Change Canada as part of the ESRF Source apportionment of aerosols and PM on Sable Island research program. The long term monitoring of air pollutants and atmospheric chemistry on Sable Island is uncertain after the end of the ESRF research contract on 31 March 2017. However, Dr. Gibson's group, in collaboration with ECCC, will likely maintain the measurements for the foreseeable future.

3.4.2 Instrumentation on Sable Island

Table 2 provides a summary of the air pollution instrumentation that are currently deployed on Sable Island. Table 2 also provides the temporal resolution of the measurement of sample collection.

Equipment	Comments
Air Monitoring Shed	
Teledyne NO _x Analyzer	Hourly
METOne BAM PM _{2.5}	Hourly
Teledyne H ₂ S Analyzer	Hourly
Teledyne SO ₂ Analyzer	Hourly
TECO O ₃ Analyzer	Hourly
Thermo Partisol 2000 dichotomous sampler Federal Reference Method	24-hr, simultaneous, integrated filter sample of $PM_{2.5}$ (fine) and $PM_{2.5-10}$ (coarse) particle mass
TSI 3031 Ultrafine particle monitor	15-min
TSI 3321 Aerodynamic Particle Sizer	1-15 min
TSI DRX DustTrak 8533 for Total PM, PM ₁₀ , PM ₂₅ and PM ₁	1-60 min
Thermo 5012 black carbon analyzer	Hourly

3.5 ANALYSES

3.5.1 Data Acquisition

The air pollution data that was available in 2016 include the TSI DRX $PM_{TSP/10/4/2.5/1}$ mass concentration instrument, the TSI 3031 Ultrafine particle number counter, TSI 3321 APS particle number counter, O₃, NO_x, SO₂, BC and H₂S.

3.5.2 Air Quality Standards pertaining to Sable Island

Table 3 contains the air quality standards for Canada, Nova Scotia and the World Health Organization (WHO). These air quality regulations will be used for comparison with the 2015 air quality data pertaining to Sable Island.

Table 3. Nova Scotia Air Quality Regulations (Environment Act) and Canadian Environmental Protection Act

Ambient Air Quality Objectives (Suggested air monitoring thresholds - µg/m³(ppb))

Pollutant and		Nova Scotia	Canada				
units (alternative	Averaging Time	Maximum Permissible	Canada	Ambient Air Quality Objectives			World Health
units in brackets)	Period	Ground Level Concentration	Wide Standard	Max Desirable	Max Acceptable	Max Tolerable	Organization (Who)
Nitrogen	1 hour	400 (213)	-	-	400 (213)	1000 (532)	(105)
dioxide ug/m ³ (ppb)	24 hour	200 (106)	-	-	200 (106)	300 (160)	
ug/m (ppb)	Annual	100 (53)	-	60 (32)	100 (53)	-	(21)
Sulfur	1 hour	900 (344)	-	450 (172)	900 (344)	-	
dioxide	24 hour	300 (115)	-	150 (57)	300 (115)	800 (306)	(75)
up/m ³ (ppb)	Annual	60 (23)	-	30 (11)	60 (23)	-	
Total Suspended	24 hour	120	-	-	120	400	
Particulate Ann Matter (TSP) up/m ³	Annual	70 (geometric mean)	-	60	70	-	
PM2.5 (fine) up/m ³	24 hour, 98 th percentile over 3 consecutive years	-	30 (by 2010)	-		-	
	24 hour				120		25
	Annual			60	70		10

PM10-2.5 (coarse) up/m ³		-	-	-	-	-	
PM ₁₀ (sum of fine and coarse)	Annual						50
Carbon	1 hour	34.6 (30)	-	15 (13)	35 (31)	-	
Monoxide mg/m ³ (ppm)	8 hour	12.7 (11)	-	6 (5)	15 (13)	20 (17)	
	1 hour	160 (82)	-	100 (51)	160 (82)	300 (153)	
Oxidants – ozone up/m ³ (ppb)	8 hour, based on 4 th highest annual value, averaged over 3 consecutive years	_	(65) {by 2010}	-	-	-	(50)
	24 hour	-	-	30 (15)	50 (25)	-	
	Annual	-	-	-	30 (15)	-	
Hydrogen	1 hour	42 (30)	-	-	-	-	
sulphide up/m ³ (ppb)	24 hour	8 (6)	-	-	-	-	

3.5.3 On Island Emission Sources

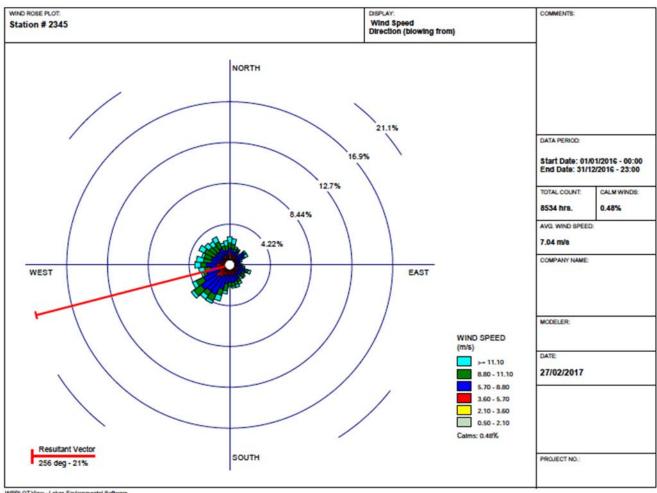
Because of the need to provide power, space heating, water heating and cooking facilities it was necessary to install generators, furnaces and cooking appliance infrastructure on Sable Island to meet this requirement. Due to the anticipated impact on air quality measurements from these heating appliances and power generators they were situated as far away as possible to the East of the air chemistry building (per. comm. Gerry Forbes, 2013). The combustion sources on Sable Island include:

- Generators
- All-purpose utility vehicle & vehicle garage
- Furnace at Operations building
- Furnace at the staff house
- Furnace at the OIC house
- Furnace at the Triplex

3.6 RESULTS AND DISCUSSION

This section covers data analysis results, graphing and additional analysis results related to the assessment of air quality on Sable Island in 2016

3.6.1 2015 Air Quality Data


Table 4 contains the descriptive statistics and data completeness for 2016 meteorological variables

Variable	Temperature (°C)	Wind Direction (°)	Wind Speed (km/hr)	
n	8414	8441	8535	
n missing	370	343	249	
Mean	9.43	256.0 (obtained from WRPLOT)	25.36	
St Dev	7.35	N/A	12.79	
Min	-9.7	N/A	0	
25 pct	3.8	N/A	17	
Median	9.4	N/A	24	
75 pct	15.2	N/A	34	
Max	53.8	N/A	91	
IQR	11.4	N/A	17	
Data Completeness (annual)	95.79%	96.10%	97.17%	

Table 4. Descriptive Statistics and Data Completeness for hourly 2016 Meteorological Data Descriptive Statistics

From Table 4, it can be seen that the data completeness for temperature, wind direction and wind speed was 95.79%, 96.10% and 97.17% respectively, which can be considered excellent data completeness. It can also been seen from Table 4 that the mean (min : max *units*) temperature and wind speed was found to be 9.43 (-9.7 : 53.8°C), 256.0 (n/a : n/a $^{\circ}$) and 25.36 km/h (0 : 91 km/h). The maximum temperature of 53.8°C seems unlikely, and may be a result of excess solar radiation heating from a nearby surface or the temperature sensor is faulty. This was also the exact same max temperature reading observed in 2015, giving further evidence that this is likely not a correct or representative observation. It is recommended that the meteorological sensors be checked by ECCC to determine if they require calibration or replacement.

Figure 3 below provides the wind rose generated using LakesEnvironmental WRPLOT software. The average wind vector was calculated to be 256°

WRPLOT View - Lakes Environmental Software

3.6.2 BLACK CARBON

Table 5 contains the descriptive statistics and data completeness for the new black carbon instrument that was deployed in October 2016.

Variable	Value
n	80703
n missing	0
Mean	0.955
St Dev	1.22
Min	0

25 pet	0.22
25 pct Median	0.22
75 pct	1.06
Max	6.59
IQR	0.84
Data Completeness	100%
Data Completeness (annual)	16.70%

2016 Annual Report – SOEP Offshore Environmental Effects Monitoring Program Section 3 Air Quality

There was not sufficient contiguous BC carbon data (16.7% data completeness) in 2016 with which to construct a meaningful time series plot. The mean (min : max $\mu g/m^3$) for BC was 0.955 (0 : 6.59 $\mu g/m^3$). The median BC concentration is similar to that found in Halifax (Gibson et al., 2013). This is surprising given that Sable Island is a marine location. It may be a result of on island fossil fuel combustion sources, e.g. aircraft, diesel generators, or long-range transport. However, with a paucity of BC data it is difficult to determine the exact source of this metric at this time.

3.6.3 PM_{TSP/10/4/2.5/1}

Table 6 contains the descriptive statistics and data completeness for 2016 TSI DRX $PM_{TSP/10/4/2.5/1}$ mass concentration. The DRX was cleaned and re-calibrating in January 2016 and cleaned every 3-months thereafter.

Variable	ΡΜ 1 [μg/m ³]	PM2.5 [μg/m ³]	PM4 [μg/m ³]	ΡΜ 10 [μg/m ³]	TSP (<60μm) [μg/m ³]
n	37464	37464	37464	37464	37464
n missing	745	745	745	745	745
Mean	11.7	12.5	12.8	13	13
St Dev	9.42	9.99	10.1	10.2	10.2
Min	0	0	0	0	0
25 pct	5	6	6	6	6
Median	9	9	10	10	10
75 pct	15	16	17	17	17
Max	120	123	124	127	127
IQR	10	10	11	11	11
Data					
Completeness					
(annual)	98.05	98.05	98.05	98.05	98.05

Table 6. 2016 DRX Descriptive Statistics for PM_{TSP/10/4/2.5/1} mass concentration.

From Table 6 it can be seen that the annual data completeness for the DRX $PM_{1/2.5/4.0/10}$ and total mass concentration was 98%, which is excellent. It can also been seen from Table 6 that the mean (min : max) for the $PM_{TSP/10/4/2.5/1}$ total mass concentration was $PM_1 = 11.7$ (0 : 120 μ g/m³), $PM_{2.5} = 12.5$ (0 : 123 μ g/m³), $PM_4 = 12.8$ (0: 124 μ g/m³), $PM_{10} = 13.0$ (0 : 127 μ g/m³) and TSP = 13.0 (0 : 127 μ g/m³) respectively. The similarity in the PM mass

concentration observed during 2016, from the total through to $PM_{1.0}$ size fractions, implies that the aerosol below TSP observed on Sable Island is many composed of fine aerosols (e.g., gas-to-particle conversion, LRT or fresh local combustion sources).

Figure 4 provides a daily time-series of TSI DRX $PM_{TSP/10/4/2.5/1}$ mass concentration from January 1st 2016 to December 31st 2016.

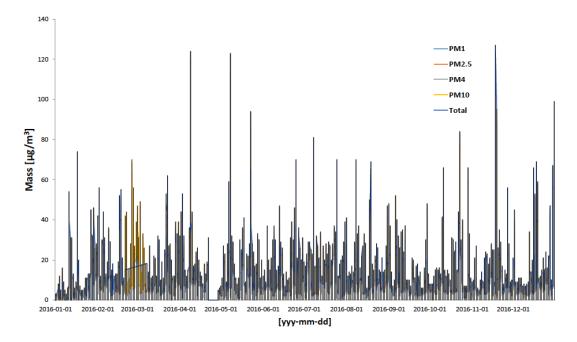


Figure 4 Daily time series TSI DRX PM_{TSP/10/4/2.5/1} mass concentration

As can be seen from Figure 4, the DRX did not collect data in May 2016 for two weeks. Regarding Table 4, it can be seen in Figure 4 and Table 6, there were no breaches of the suggested threshold value (1-hr) or the Canada Ambient Air Quality Objectives (24-hr) for $PM_{2.5}$.

3.6.4 COARSE AEROSOL PARTICLE NUMBER

Table 7 contains the descriptive statistics and data completeness for 2016 TSI APS particle number counts in the size fractions below 0.523, 1.486, 2.4858, 3.52, 5.829, 7.234 and 10.37 μ m. These size fractions were created from averaging the relevant 56 size fractions. This was done to reduce the amount of detail which would not be appropriate for this report. The size bins were also chosen to roughly correspond with the TSI DRX particle mass concentration size fractions above.

APS (particle count)	<0.523µm	1.486µm	2.458µm	3.523µm	5.829µm	7.234µm	10.37µm
n	20497	20497	20497	20497	20497	20497	20497
n missing	14623	14623	14623	14623	14623	14623	14623
Mean	124275	3196	615.5	141.2	12.99	3.922	0.558
St Dev	124915.6	3800.9	1058.61	405.46	73.84	29.34	3.64
Min	360	0	0	0	0	0	0
25 pct	46486	1129	106	9	0	0	0
Median	87494	2349	358	39	2	1	0
75 pct	149455	4054	763	132	8	2	0
Max	1963180	86875	23737	8779	2743	1358	159
IQR	102969	2925	657	123	8	2	0
Data							
Completeness (annual)	53.64	53.64	53.64	53.64	53.64	53.64	53.64

Table 7. 2016 APS 3321 Descriptive Stats

From Table 7, it can be seen that the data completeness over the operation period for the APS was 53.64%. Unfortunately, this instrument suffered from a number of malfunctions, e.g. pump failure and mother board failure. A second instrument was borrowed from the University of Calgary, Department of Chemistry. It can also been seen from Table 7 that the mean (min : max *units* = #) for the APS size fractions particle number counts were <0.523 μ m = 124275 (360 : 1963180 #), 1.486 μ m = 3196 (0 : 86875 #), 2.458 μ m = 615.5 (0 : 23737 #), 3.523 μ m = 141.2 (0 : 8779 #), 5.829 μ m = 12.99 (0 : 2743 #), 7.234 μ m = 3.922 (0 : 1358 #) and 10.37 μ m = 0.558 (0 : 159 #) respectively. The reduction in particle number counts observed from the <0.523 μ m to 10.37 μ m size range fits perfectly with the theory of particle size distributions in the atmosphere. The high PM# in the <0.523 μ m size fraction likely being related to aged aerosol and the >2.458 μ m likely related to sea salt spray and sand particulate.

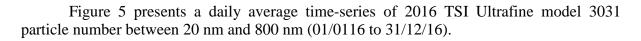

3.6.5 ULTRAFINE PARTICLE NUMBER COUNTS

Table 8 contains the descriptive statistics and data completeness for the new TSI 3031 Ultrafine particle number counter.

variable	20-30 nm	30-50 nm	50-70 nm	70-100 nm	100-200	200-800
					nm	nm
Ν	366.00	366.00	366.00	366.00	366.00	366.00
N missing	24.00	24.00	24.00	24.00	24.00	24.00
Mean	328.39	361.20	228.17	206.11	253.51	43.46
St. dev	312.36	468.94	273.19	236.78	260.94	51.51
Min	16.11	8.05	1.44	0.75	3.98	2.80
25 pct	115.04	121.14	69.33	64.89	101.61	18.00
Median	223.15	245.77	154.94	133.45	183.90	32.13
75 pct	382.42	483.98	301.22	277.07	321.43	53.12
IQR	267.39	362.83	231.89	212.18	219.83	35.12
Max	2197.13	10023.75	5739.00	4373.75	8193.00	1077.75
Completeness	93.44	93.44	93.44	93.44	93.44	93.44
Annual	93.44	93.44	93.44	93.44	93.44	93.44
completeness						

 Table 8. 2016 Daily Ultrafine particle number counts (01/0116 to 31/12/16)

From Table 8, the data completeness over the operation period for the particle number counts, in the range 20-30, 30-50, 50-70, 70-100,100-200 and 200-800 nm for 2016 was 93%, which can be considered excellent data capture. It can also been seen from Table 8 that the mean (min : max *units* = #) 3031 particle number counts, in the various size ranges, were as follows: 20-30 nm = 328.39 (16.11 : 2197.13 #), 30-50 nm = 361.20 (8.05 : 10023.75 #), 50-70 nm = 228.17 (1.44: 5739.00 #), 70-100 nm = 206.11 (0.75 : 4373.75 #), 100-200 nm = 253.51 (3.98 : 8193.00 #) and 200-800 nm = 43.46 (2.80 : 1077.753 #) respectively. The higher number count in the small size fractions (20-50 nm) is again typical of atmospheric particle size distributions. This size distribution being related to gas-to-particle conversion of marine emitted gases, long-range-transport gases, secondary ozone reaction particulate or fossil fuel combustion gases.

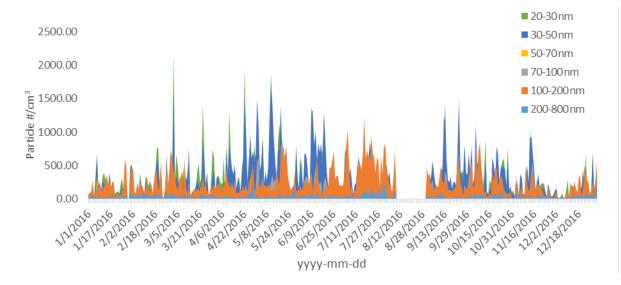


Figure 5 TSI Ultrafine model 3031 particle number daily time series (01/01/16 to 31/01/16)

Analysis of marine chlorophyll concentrations and visible satellite images provided evidence that the spikes in the hourly UFP seen in Figure 5 are related to gas-to-particle conversion of phytoplankton bloom emissions, and not O&G operations. The missing data was due to a pump failure.

3.6.6 NO_X, O₃, SO₂ AND H₂S

Table 9 below provides the descriptive statistics for 2016 NO_x , O_3 , SO_2 and H_2S observed on Sable Island.

variable	NO _x (ppbv)	O ₃ (ppbv)	SO ₂ (ppbv)	H ₂ S (ppbv)
Ν	184	184	184	184
N missing	0	0	0	5
Mean	1.15	25.10	0.74	0.35
St. dev	0.74	5.65	0.37	0.46
Min	0	14	0	0
25 pct	0.72	21.81	0.49	0.19
Median	1.02	25.48	0.75	0.32
75 pct	1.442	29.80	0.91	0.42
IQR	0.72	7.99	0.42	0.23
Max	7	42	3	6
Completeness	100	100	100	97.3
missing dataset	0	0	0	5
Annual completeness	67%	67%	67%	65%

Table 9. Descrip	ntive statistics	for 2016 NO _v .	O ₃ , SO ₂ and H ₂ S
Table 7. Deseri	pure statistics	101 2010 110X,	03, 002 and 1120

From Table 9, the data completeness over the operation period for NO_x , O_3 and SO_2 was 67% and 65% for H₂S, which can be considered as insufficient data capture for representative annual data analysis. This low data capture was due to the new instruments not being installed until the end of Q1 2016. It can also been seen from Table 9 that the mean (min : max *units* = ppbv) NOx, O_3 , SO_2 and H₂S were as follows: $NO_x = 1.15$ (0 : 7 ppbv), $O_3 = 25.10$ (14 : 42 ppbv), $SO_2 = 0.74$ (0 : 3 ppbv), $H_2S = 0.35$ (0 : 6 ppbv) respectively. The H₂S is likely to be due to emissions from the nearby O&G platforms.

Figure 6 below is a time series of NOx observed on Sable Island from 01/05/16 to 31/1216

2016 Annual Report – SOEP Offshore Environmental Effects Monitoring Program Section 3 Air Quality

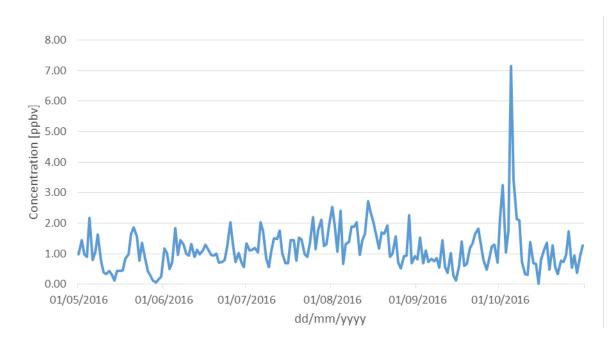


Figure 6 2016 NO_x time series

Figure 6 shows background NOx of 1.15 ppbv. However, on 05/10/16 there is an elevated level of 7.16 ppbv. This happened a few days after the ExxonMobil platform wide maintenance shutdown. The air flow during the spike observations was directly over the Thebaud platform. Therefore, it could be a possible source. However, the NO_x level was below the calculated operational "spike" threshold set at 17 ppbv and well below the Canada Ambient Air Quality Objective of 213 ppbv.

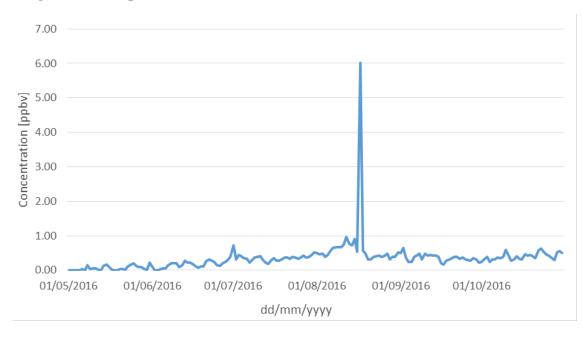


Figure 7 below provides a time series of H₂S from 05/01/16 to 21/10/016.

2016 Annual Report – SOEP Offshore Environmental Effects Monitoring Program Section 3 Air Quality

Figure 7 shows a spike in H_2S of 6.01 ppbv on 17/07/16. This is above the operating spike threshold value of 3.11 ppbv. However, it is well below the 1-hr Nova Scotia air quality objective of 30 ppbv. This spike is obviously linked to the elevated SO₂ level of 3.04 ppbv that occurred on the same day. However, the SO₂ level was below the operational spike threshold of 6.0 ppbv and well below the 1-hr Canada Ambient Air Quality Objectives threshold of 344 ppbv. Scrutiny of the air mass back trajectories (Figure 8) for this day showed that air flow passed over both the Deep Panuke and Thebaud platforms preceding and during observations on Sable Island. The visible satellite image shows a little haze to the south east of Sable Island which is likely related to smoke generated from the wildfires in the NE US as shown in Figure 8. However, these wildfires were unlikely to have caused the spike in H_2S (an anaerobic sour gas) and SO₂ observed on the 17/07/16.

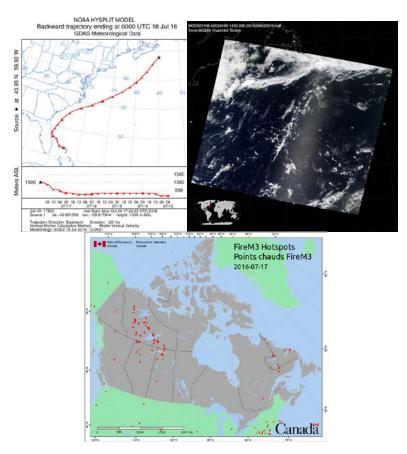
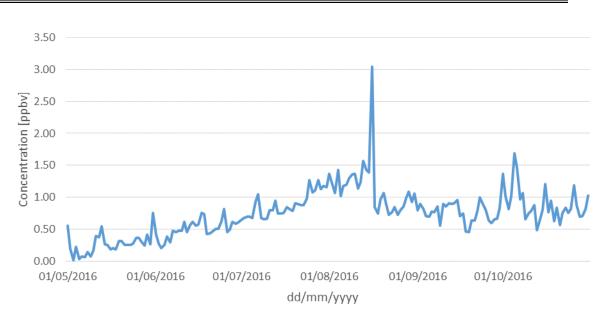
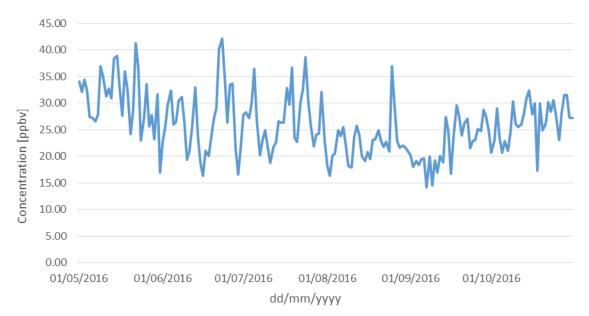



Figure 8 Back trajectory at 8pm 17/07/16 (above left), TERRA MODIS visible image 2.30pm 17/01/16 (above right) Fire Hotspots 17/07/16 (above middle)


Figure 9 below provides a time series of SO_2 from 05/01/16 to 10/31/16.

2016 Annual Report – SOEP Offshore Environmental Effects Monitoring Program Section 3 Air Quality

Figure 9 SO₂ time series from 05/01/16 to 31/10/16

Figure 10 below provides a time series of O_3 observations on Sable Island between 05/01/16 to 31/10/16.

Figure 10 O₃ time series from 05/01/16 to 31/10/16

Regarding Table 9 and Figure 10, there are no threshold breaches or excursions above the Canadian Ambient Air Quality Objective for O_3 on Sable Island during the 2016 measurement period. The O_3 concentrations observed are typical for the region, being slightly elevated after the Spring maximum O_3 that occurs during April, a typical steady decline in daily O_3 concentrations over the summer with a slight rise again observed heading into the winter season (Gibson et al., 2009).

3.6.7 Air Emission Spike Thresholds and Threshold Breaches

Air emission monitoring thresholds values were calculated by Dr. Mark Gibson (Dalhousie University) in consultation with Encana and Exxon Mobil. The threshold values were calculated using extreme value analysis. These thresholds were established for monitoring purposes to identify possible "spikes" in air emissions parameters on Sable Island that could be related to O&G production operations. They are <u>not</u> regulatory thresholds, and are well below any international/Canadian/provincial health impact thresholds (see Table 8).

A spike is <u>not</u> a reportable incident but only indicates that an air parameter is above typical background levels. All spikes are investigated to determine if they are related to O&G operations near to Sable Island. Investigations include air mass back-trajectory analysis and pollution rose analysis to determine the long-range and local upwind sources respectively.

Table 10 provides the threshold values chosen for the air emission evaluation of O&G operations.

Metric	Reference: extreme value analysis (1-hr data period) ¹	Suggested threshold value (1-hr)	Canada Ambient Air Quality Objectives ⁵
NO _x ²	3/year return threshold for data available from 01/01/10 to 16/07/10	17.0 ppbv	213 ppb (1-hr)
SO ₂	1/year return threshold for data available from 01/04/08 to 01/10/11	6.0 ppbv	344 ppb (1-hr)
H_2S^3	1/year return threshold for data available from 02/05/12 to 09/10/12	3.11 ppbv	30 ppb (1-hr, NS)
PM _{2.5}	1/year return threshold for data available from 01/01/07 to 01/10/11	168.0 μg/m ³	120 μg/m ³ (24-hr)
Ozone	1/year return threshold for data available from 01/01/07 to 01/04/11 (1-hr data period)	104.0 ppbv	82 ppb (1-hr)

 Table 10. Air emission 'spike thresholds for Sable Island

<u>Note 1</u>: An extreme value analysis was conducted on air emissions data available between 2007 and 2011. For each metric, the period mentioned in this column indicates the period for which data was available for this specific metric during these five years. For H2S, the data available for these five years was poor quality; therefore, 2012 H2S emission data was obtained from NSE to calculate the H2S threshold. All thresholds will be reviewed on an annual basis and recalculated with the new emissions data that becomes available.

<u>Note 2</u>: A higher return threshold (3/year) was used for the extreme value analysis for NOx (which should result in a higher number of spikes to investigate) because "elevated pollution events" identified during the 2003-2006 ESRF study for this parameter were linked to oil and gas operations as a possible causal factor.

<u>Note 3:</u> Canada Ambient Air Quality Objectives (CAAQO), maximum acceptable 1-hr thresholds are provided as a reference. For PM2.5, the 24-hr CAAQO threshold was provided because a 1-hr threshold was not available. For H2S, the Nova Scotia 1-hr ground-level concentration threshold was used because a CAAQO threshold was not available. The ozone "spike" threshold is higher than the CAAQO threshold because of historical elevated ozone levels in the area.

Annual NOAA HYSPLIT air mass back trajectory analysis

In an effort to identify upwind source regions, 5-day air mass back trajectories were run twice per day for the whole of 2016. These were referred to if required. They are available upon request.

3.7 CONCLUSIONS

In January 2016 a calibrated Thermo 49i O_3 autoanalyzer and MetOne1020 BAM) was installed on Sable Island. In addition, new NO_x, SO₂ and H₂S analyzers were installed in April 2016. A new Thermo MAAP 5012 BC instrument was install in Q3 of 2016. Data completeness for the DRX TSI, TSI UFP and weather data were > 90%. The BC data completeness was only 16%.

The average wind vector for 2016 was 256° which is consistent with prevailing winds in the North West (NW) Atlantic.

The data completeness for 2016 was only 16.7%, due to late deployment of the instrument (Q3). The mean (min : max μ g/m³) for BC was 0.955 (0 : 6.59 μ g/m³). The median BC concentration is similar to that found in Halifax (Gibson et al., 2013). This is surprising given that Sable Island is a remote marine location. It may be a result of on island fossil fuel combustion sources, e.g. aircraft, diesel generators, or long-range transport. However, with a paucity of BC data it is difficult to determine the exact source of this metric at this time.

The 2016 data completeness for the DRX $PM_{1/2.5/4.0/10}$ and total mass concentration was 98%. The mean (min : max) for the $PM_{TSP/10/4/2.5/1}$ total mass concentration was $PM_1 = 11.7$ (0 : 120 μ g/m³), $PM_{2.5} = 12.5$ (0 : 123 μ g/m³), $PM_4 = 12.8$ (0: 124 μ g/m³), $PM_{10} = 13.0$ (0 : 127 μ g/m³) and TSP = 13.0 (0 : 127 μ g/m³) respectively. There were no threshold or air quality standard breaches for $PM_{2.5}$ in 2016.

Due to various instrument malfunctions, the 2016 data completeness for the APS was 53.64%. The mean (min : max *units* = #) for the APS size fractions particle number counts were <0.523 μ m = 124275 (360 : 1963180 #), 1.486 μ m = 3196 (0 : 86875 #), 2.458 μ m = 615.5 (0 : 23737 #), 3.523 μ m = 141.2 (0 : 8779 #), 5.829 μ m = 12.99 (0 : 2743 #), 7.234 μ m = 3.922 (0 : 1358 #) and 10.37 μ m = 0.558 (0 : 159 #) respectively. The data completeness over the operation period for the UFP particle number counts, in the range 20-30, 30-50, 50-70, 70-100,100-200 and 200-800 nm for 2016 was 93%, which can be considered excellent data capture. The mean (min : max *units* = #) UFP 3031 particle number counts, in the various size ranges, were as follows: 20-30 nm = 328.39 (16.11 : 2197.13 #), 30-50 nm = 361.20 (8.05 : 10023.75 #), 50-70 nm = 228.17 (1.44: 5739.00 #), 70-100 nm = 206.11 (0.75 :

4373.75 #), 100-200 nm = 253.51 (3.98 : 8193.00 #) and 200-800 nm = 43.46 (2.80 : 1077.753 #) respectively.

The data completeness over the operation period for NO_x , O_3 and SO_2 was 67% respectively and 65% for H₂S, which can be considered as insufficient data capture for representative annual data analysis. This low data capture for these metrics was due to the new instruments not being installed until the end of Q1 2016. The mean (min : max *units* = ppbv) NOx, O_3 , SO_2 and H₂S were as follows: $NO_x = 1.15$ (0 : 7 ppbv), $O_3 = 25.10$ (14 : 42 ppbv), $SO_2 = 0.74$ (0 : 3 ppbv), H₂S = 0.35 (0 : 6 ppbv) respectively.

There were no threshold or air quality standard breaches for O_3 in 2016. However, there was a spike in H₂S of 6.01 ppbv on 17/07/16. This H₂S spike was above the operating threshold value of 3.11 ppbv. However, it was well below the 1-hr Nova Scotia air quality objective of 30 ppbv. This H₂S spike is obviously linked to the elevated SO₂ level of 3.04 ppbv that occurred on the same day. However, the SO₂ level was below the operational spike threshold of 6.0 ppbv and well below the 1-hr Canada Ambient Air Quality Objectives threshold of 344 ppbv. Scrutiny of the air mass back trajectories for this day showed that air flow passed over both the Deep Panuke and Thebaud platforms preceding and during observations on Sable Island.

On October 5, 2016 there was an elevated measurement of NOx of 7.16 ppbv. This happened a few days after the ExxonMobil platform wide maintenance shutdown. The air flow during the elevated event observations was directly over the Thebaud platform. Therefore, it could be a possible source. However, NO_x level was below the operational spike threshold set at 17 ppbv and well below the Canada Ambient Air Quality Objective of 213 ppbv.

3.9 REFERENCES

- BROWNELL, D. K., MOORE, R. M. & CULLEN, J. J. 2010. Production of methyl halides by Prochlorococcus and Synechococcus. *Global Biogeochem. Cycles*, 24, GB2002.
- CNSOPB 1990. Annual Report. 22.
- CNSOPB 2013. Encana's Deep Panuke Project.
- GANTT, B., NICHOLAS, M., ZHANG, Y. & XU, J. 2010. The effect of marine isoprene emissions on secondary organic aerosol and ozone formation in the coastal United States. *Atmospheric Environment*, 44, 115-121.
- GIBSON, M. D., GUERNSEY, J. R., BEAUCHAMP, S., WAUGH, D., HEAL, M. R., BROOK, J. R., MAHER, R., GAGNON, G. A., MCPHERSON, J. P., BRYDEN, B., GOULD, R. & TERASHIMA, M. 2009a. Quantifying the Spatial and Temporal Variation of Ground-level Ozone in the Rural Annapolis Valley, Nova Scotia, Canada using Nitrite-impregnated Passive Samplers. *Journal of the Air & Waste Management Association*, 59, 310-320.
- GIBSON, M. D., HEAL, M. R., BACHE, D. H., HURSTHOUSE, A. S., BEVERLAND, I. J., CRAIG, S. E., CLARK, C. F., JACKSON, M. H., GUERNSEY, J. R. & JONES, C. 2009b. Using Mass Reconstruction along a Four-Site Transect as a method to interpret PM10 in West-Central Scotland, United Kingdom. *Journal of the Air and Waste Management Association*, 59, 1429-1436.
- GIBSON, M. D., HEAL, M. R., LI, Z., KUCHTA, J., KING, G. H., HAYES, A. & LAMBERT, S. 2013a. The spatial and seasonal variation of nitrogen dioxide and sulfur dioxide in Cape Breton Highlands National Park, Canada, and the association with lichen abundance. *Atmospheric Environment*, 64, 303-311.
- GIBSON, M. D., KUNDU, S. & SATISH, M. 2013b. Dispersion model evaluation of PM2.5, NOx and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. *Atmospheric Pollution Research*, 4, 157-167.
- GIBSON, M. D., PIERCE, J. R., WAUGH, D., KUCHTA, J. S., CHISHOLM, L., DUCK, T. J., HOPPER, J. T., BEAUCHAMP, S., KING, G. H., FRANKLIN, J. E., LEAITCH, W. R., WHEELER, A. J., LI, Z., GAGNON, G. A. & PALMER, P. I. 2013c. Identifying the sources driving observed PM2.5 temporal variability over Halifax, Nova Scotia, during BORTAS-B. *Atmos. Chem. Phys.*, 13, 7199-7213. GREENHORSESOCIETY 2012. Sable Island Greenhorse Society.
- INKPEN, T., HINGSTON, M., WAUGH, D., KEAST, S., MCPHERSON, J., WORTHY, D. & FORBES, G. 2009. Sable Island Air Monitoring Program Report: 2003-2006 Meteorological Service of Canada Atlantic Region Science Technical Report
- MONKS, P. S., GRANIER, C., FUZZI, S., STOHL, A., WILLIAMS, M. L., AKIMOTO, H., AMANN, M., BAKLANOV, A., BALTENSPERGER, U., BEY, I., BLAKE, N., BLAKE, R. S., CARSLAW, K., COOPER, O. R., DENTENER, F., FOWLER, D., FRAGKOU, E., FROST, G. J., GENEROSO, S., GINOUX, P., GREWE, V., GUENTHER, A., HANSSON, H. C., HENNE, S., HJORTH, J., HOFZUMAHAUS, A., HUNTRIESER, H., ISAKSEN, I. S. A., JENKIN, M. E., KAISER, J., KANAKIDOU, M., KLIMONT, Z., KULMALA, M., LAJ, P., LAWRENCE, M. G., LEE, J. D., LIOUSSE, C., MAIONE, M., MCFIGGANS, G., METZGER, A., MIEVILLE, A., MOUSSIOPOULOS, N., ORLANDO, J. J., O'DOWD, C. D., PALMER, P. I., PARRISH, D. D., PETZOLD, A., PLATT, U., PÖSCHL, U., PRÉVÔT, A. S. H., REEVES, C. E., REIMANN, S., RUDICH, Y., SELLEGRI, K., STEINBRECHER, R., SIMPSON, D., TEN BRINK, H., THELOKE, J., VAN DER WERF, G. R., VAUTARD, R., VESTRENG, V., VLACHOKOSTAS, C. & VON GLASOW, R. 2009. Atmospheric composition change – global and regional air quality. *Atmospheric Environment*, 43, 5268-5350.
- PALMER, P. I., PARRINGTON, M., LEE, J. D., LEWIS, A. C., RICKARD, A. R., BERNATH, P. F., DUCK, T. J., WAUGH, D. L., TARASICK, D. W., ANDREWS, S., ARUFFO, E., BAILEY, L. J., BARRETT, E., BAUGUITTE, S. J. B., CURRY, K. R., CARLO, P. D., CHISHOLM, L., DAN, L., DRUMMOND, J. R., FORSTER, G., FRANKLIN, J. E., GIBSON, M. D., GRIFFIN, D., HELMIG, D., HOPKINS, J. R., HOPPER, J. T., JENKIN, M. E., KINDRED, D., KLIEVER, J., BRETON, M. L., MATTHIESEN, S., MAURICE, M., MOLLER, S., MOORE, D. P., ORAM, D. E., O'SHEA, S. J., OWEN, R. C., PAGNIELLO, C. M. L. S., PAWSON, S., PERCIVAL, C. J., PIERCE, J. R., PUNJABI, S., PURVIS,

R. M., REMEDIOS, J. J., ROTERMUND, K. M., SAKAMOTO, K. M., STRAWBRIDGE, K. B., STRONG, K., TAYLOR, J., TRIGWELL, R., TERESZCHUK, K. A., WALKER, K. A., WEAVER, D., WHALEY, C. & YOUNG, J. C. 2013. Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview. *Atmos. Chem. Phys.*, 13, 6239-6261.

- PALMER, P. I. & SHAW, S. L. 2005. Quantifying global marine isoprene fluxes using MODIS chlorophyll observations. *Geophys. Res. Lett.*, 32, L09805.
- WAUGH, D., INKPEN, T., HINGSTON, M., KEAST, S., MCPHERSON, J., WORTHY, D. & FORBES, G. 2010. Sable Island Air Monitoring Program Report No: 2003-2006. *Environmental Studies Research Funds*, Report No. 181, 1-56.

4. BIRD MONITORING

4.1 RATIONALE / HISTORY

Seabird monitoring observations were conducted on a relatively continuous basis at the Thebaud production platform from 1999 until 2004 by independent observers supplied by Offshore Oil and Gas Observer Program. The OGOP observers received periodic training in seabird (OGOP). identification from various experts including Canadian Wildlife Service (CWS) biologists. While CWS believed that these observations provided a general appreciation of seabird/platform interactions, the observations were unable to fully assess the relative distribution of seabirds around the platform since they were restricted to a single location and limited field of view (Wilhelm and Boyne 2006). As an alternative to earlier observations at a single location (i.e., platform) by OGOP observers, a vessel-based approach using transect surveys was adopted in 2005 involving systematic observations of seabirds by CWS-trained biologists along supply vessel transits to and from offshore platforms. The transect approach offered the possibility of detecting changes in density of seabirds in relation to distance from SOEP offshore manned and unmanned gas platforms off Nova Scotia. This vessel-based approach was conducted in 2007, 2008, 2010, and 2011. Analysis of these data were supplemented by the availability of vessel-based transects conducted in other areas of the Scotian Shelf (i.e., not along regular supply vessel tracks to and from SOEP platforms) by CWS observers aboard 'vessels-of-opportunity' as part of a multi-year monitoring program to document the distribution and abundance of seabirds in offshore areas of Atlantic Canada.

In 2011 EMC assessed the feasibility of installing radar instrumentation as a means to monitor seabird movements in the vicinity of a satellite platform. The assessment concluded that the installation was not feasible based on the scope of platform modifications needed, the competing work priorities for the platform and the intervention plans. An alternative approach that incorporated receivers on standby/supply vessels was implemented. One standby vessel is located at the Thebaud location; one other is used to support satellite platform interventions and this provided data for the full field.

EMC field staff look for birds during their daily surveillance checks on the offshore platforms further to SOEP's Canadian Wildlife Permit LS 2560 requirements. An annual report detailing the numbers of birds salvaged, released and deceased on the platforms, provides monitoring data on those species observed on the offshore facilities.

EMC has developed a training package and informational tools to help offshore personnel carry-out the required monitoring and reporting.

Stranded bird handling procedures were jointly developed in 2012 and 2013 with Encana after discussions and review with the CNSOPB. This protocol was developed to ensure consistent procedures are used on the offshore facilities on the Scotian Shelf. These measures include assigning offshore personnel responsible for tracking bird observations/data, directions on bird handling, and offshore personnel awareness/training. This protocol was submitted to the CNSOPB and subsequently the Canadian Wildlife Service for review along with clarification on required bird handling procedures.

4.2 GOALS

The goal of the 2016 bird monitoring component was to ensure SOEP was in compliance with the CWS permit issued under section 19 of the Migratory Birds Regulations and provide information to the regulator on the number and types of birds salvaged, released and deceased on the offshore facilities. Monitoring of tagged birds by offshore personnel should help with the evaluation of seabird abundance and behavior and how this may be affected by the presence of the platforms and flaring activities.

4.3 OBJECTIVES

The objective of the bird monitoring component of the EEM program is to provide bird observational data from platforms on the Sable Island Bank. This is undertaken in order to:

- 1) document the number of birds and species in the vicinity of the offshore facilities, by documenting those observed, salvaged, released and deceased, and
- 2) determine the extent of attraction of birds to SOEP manned and unmanned offshore platforms and support vessels.

Objective 2 has been addressed by the Acadia/Encana instrument-based automated bird monitoring study, "Assessment of Bird Interactions with Offshore Infrastructure Associated with the Oil and Gas Industry of Nova Scotia, Canada" that took place 2011- 2014. EMC's support included: VHF radio-tracking on Sable Project supply vessels, providing monitoring data related on the physically tagged gulls observed on or near the SOEP facilities (2011-2014), providing financial support for the purchase of storm petrel tracking tags (2012), and providing a flight to transport bird monitoring equipment to Sable Island in Spring 2012.

4.4 METHODOLOGY

Offshore operations personnel are tasked with conducting walk-arounds on the platforms and supply vessels and reporting any stranded or dead birds to the Logistics office on Thebaud. This data is compiled and a report is submitted annually to the Canadian Wildlife Service detailing numbers of all birds (oiled or not) that were captured and released as well as those deceased during the year. Table 4-1 provides the methodology for the survey.

Parameter	Sampling Methodology
Survey date:	Between January 1 and December 31, 2016, surveys for
	stranded and dead birds were conducted on SOEP offshore
	platforms.
Number of	Daily (weather permitting) on Thebaud and during
Surveys	interventions on satellite platforms.
Type of	Species identification, condition (alive or dead, oiled, wet,
Sample:	lethargic, dazed), date, action taken and fate of bird were
	recorded for birds found.
Sample	No samples prepared in 2016. If a bird is found oiled,
Preparation	corpse to be packaged in aluminum foil, labeled, kept
	frozen, and may be analyzed (instructed per CWS-
	Dartmouth). In the case of birds found dead on the
	platform in numbers greater than 10 per incident, these are
	to be frozen and shipped to shore to UPEI Atlantic
	Veterinary Pathology lab for analysis.
Number of	12 (no instances of greater than 10 birds)
Samples	-

Table 4-1: Bird Field Survey Methods

4.5 ANALYSIS/RESULTS

No physically tagged birds were observed on SOEP facilities in 2016.

Currently, walk-arounds are conducted on the platforms and supply vessels and operators and crew are tasked with reporting any stranded or dead birds to the Logistics office on the Thebaud platform.

SOEP has been reporting data to CWS since 2007, and in 2012, the reporting format was revised to capture additional data for CWS with regards to the discovery dates, the condition of the birds and whether the bird may have died in care, was found dead, released or sent for rehab. Results for 2016 and the 5 previous years are provided in Table 4-2 below:

Part Part Part Part Part Part Part Part							Captur	ed Alive		
DateSpeciesD alO sO sRis'dDICSFRConditionAction TakenFate of BindApril 8, 201611111111111April 9, 201611111111111April 9, 201611111111111April 27, 2016UNKN22111				F	ound					
DateSpeciesTotA aO aO aO aO aO aO aO aO aO aO aO aO aO aPace of BirdApril 9, 2016LRSP11					Dead	Un	-oiled	Oil	ed*	Comments
DateSpeciesTotAOriedDINR*dDICSFRConditionAction TakenPate of BirdApril 8, 2016LHSP111 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
Date Species al S "" C Ris' DIC SFR Condition Action Taken Face of Bird April 9, 2016 LHSP 1 </td <td></td> <td></td> <td>T</td> <td></td> <td></td> <td>DI</td> <td></td> <td></td> <td></td> <td></td>			T			DI				
April 8, 2016LHSP111Image: constraint of the state of the		с ·					D1 1 1	DIC	GED	
2016 LHSP 1 1 Image: Constraint of the second of th		Species	al	5	*	C	RIS'd	DIC	SFR	Condition Action Laken Fate of Bird
April 9, 2016UNKN222Found on North Triumph platform, both disposed of overboard. North 2016 of unity species, due to decomposition.April 27, 2016VNKN111Set of black wings found 6-8 inches long, on Thebaud compression to plack south side.April 17, 2016VNKN111Set of black wings found 6-8 inches long, on Thebaud oiled and no signs of traumaMay 11, 2016Ventwork111Set of black wings found 6-8 inches long, on Thebaud platform production deck, not oiled and no signs of traumaMay 11, 2016American11Set of black wings found on StatumaMay 26, 2016Barn swallow111Set of black wings found on StatumaMay 27, 2016Black Poll11Set of black wings found on Venture Sea supply vessel. Un-oiled.May 27, 2016Black Poll11Set of black wing way.June 6, 2016Set of black wings found on Venture Sea supply vessel. Re-located to box wind water. Released at night and flew away.June 27, 2016Brown booby11Set of black wing way.June 27, 2016Serey11Set of black wing way.July 16, 2016Northern1Set of black wing way.July 21, 2016Serey11Set of black wing way.July 22, 2016Serey11Set of black wing way.July 24, 2016Serey11Set of black wing way.July 24,		THED	1	1						Found dead on Venture Sea supply vessel. Un-oiled
April 9, 2016 UNKN 2 2 overboard. Not able to identify species, due to decomposition. April 27, 2016 INKN 1 I overboard. Not able to identify species, due to decomposition. April 27, 2016 UNKN 1 I overboard. Not able to identify species, due to decomposition. April 27, 2016 UNKN 1 I overboard. Not able to identify species, due to decomposition. May 11, American American Found dead on Thebaud platform production deck, not oiled and no signs of trauma May 26, 2016 Barn swallow 1 I overboard. Not able to identify species. May 27, 2016 Black Poll I I overboard. Not able to identify species. June 6, 2016 Warbler 1 I Found dead on Venture Sea supply vessel. Un-oiled. June 27, 2016 Brown booby 1 I Interplation Production deck, not not reaming not shape. June 26, 2016 Brown booby 1 I Interplation Production deck, not not reaming not shape. June 27, 2016 Brown booby 1 Interplation Production deck not not reaming not shape. June 27, 2016 Found don Siem Hame supply vessel. Re-located to box with water. Rele	2010	LIISI	1	1						Found on North Triumph platform, both disposed of
2016 UNKN 2 2 decomposition. April 27, Set of black wings found 6-8 inches long, on Thebaud compression top deck south side. May 11, Yellow-billed Found dead on Thebaud platform production deck, not Oile cuckoo 1 1 May 11, American Image: Cuckoo 1 1 May 26, robin 1 Image: Cuckoo 1 1 May 26, robin 1 Image: Cuckoo 1 1 2016 robin 1 Image: Cuckoo 1 1 Amy 26, Barn swallow 1 1 Image: Cuckoo Found dead on Venture Sea supply vessel. Un-oiled. May 27, Black Poll 1 1 Image: Cuckoo Found on Thebaud platform wellhead cellar deck, Elland, E	April 9,									overboard. Not able to identify species, due to
2016UNKN11ICompression top deck south side.May 11, OlfCuckoo11Pound dead on Thebaud platform production deck, not oiled and no signs of traumaMay 11, Map 26, 2016AmericanIAmericanAmericanMay 26, 2016Barn swallow11IFlew away.May 27, 2016Barch PoundIIIAmericanIIIIIMay 27, 2016Barch PoundIIIIJune 6, 2016IIIIIIJune 7, 2016IIIIIIJune 7, 2016IIIIIIJune 7, 2016IIIIIIJune 7, 2016IIIIIIJune 7, 2016IIIIIIJune 7, 2016IIIIIIJuly 16, 2016NorthernIIIIIJuly 12, 2016IIIIIIJuly 12, 2016IIIIIIJuly 24, 2016IIIIIIJuly 24, 2016IIIIIIJuly 24, 2016IIIIIIJuly 24, 2016IIII<	2016	UNKN	2	2						
May 11, 2016Yellow-billed cuckooII<										
2016cuckoo111Image: Constraint of the con			1	1						compression top deck south side.
May 11, 2016American robinIIIAlive, observed on Thebaud platform weather deck. Flew away.May 26, 2016Barn swallow11IFlew away.2016Barn swallow11Found on Thebaud platform wellhead cellar deck , Emaciated and un-oiledMay 27, 2016Black PollFound on Thebaud platform wellhead cellar deck , Emaciated and un-oiledJune 6, 2016IIIJune 25, 2016Found on Venture Sea supply vessel. Re-located to box with water. Released at night and flew away.June 27, 2016Found bootherFound dead on North Triumph when crew landed.July 21, 2016OspreyIIFound on Sitem Hame supply vessel. Re-located to box with water. Released at night and flew away.July 21, 2016Found on Thebaud Compression platform behind emergency generator, un-oiledFound on Sitem Hame supply vessel. Re-located to box with water. Released at night and flew away.July 22, 2016IIIFound on Sitem Hame supply vessel. Re-located to box with water. Released at night and flew away.July 22, 2016IIIIJuly 24, 2016IIIIAugust 8, 2016YellowIIFound on Sitem Hame supply vessel. Re-located to box with water. Released at night and flew away.July 24, 2016IIIFound on Sitem Hame supply vessel. Re-located to box with water. Released at night and flew away.July 24, 2016IIII </td <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1	1						
2016robin11111Flew away.May 26, 2016Barn swallow11Found dead on Venture Sea supply vessel. Un-oiled.May 27, 2016Black Poll11Found on Thebaud platform wellhead cellar deck , Emaciated and un-oiledJune 6, 2016I1IFound on Venture Sea supply vessel. Re-located to box with water. Released at night and flew away.June 25, 2016Image: State Stat			1	1						
May 26, 2016Barn swallow111May 27, 2016Black Poll Warbler111June 6, 2016LHSP111June 25, 2016Brown booby111June 27, 2016Osprey111June 27, 2016Cosprey111June 27, 2016T111June 27, 2016T111June 27, 2016T111July 16, 2016Northerm Uly 21, 2016T11July 21, 2016T111July 22, 2016LHSP111July 24, 2016LHSP111July 24, 2016LHSP111July 24, 2016T111July 24, 2016T111 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			1							
May 27, 2016Black PollIIFound on Thebaud platform wellhead cellar deck , Emaciated and un-oiled1une 6, 2016IIIIFound on Thebaud platform wellhead cellar deck , Emaciated and un-oiled1une 25, 2016IIIIFound on Venture Sea supply vessel. Re-located to box with water. Released at night and flew away.1une 25, 2016Brown boobyIINoted as rare to see near Sable Island. Flew away.1une 27, 2016OspreyIIIEmaciated and un-oiled.2016OspreyIIIEmaciated and un-oiled.1ulu 21, 2016Venture Sea URAFound on Thebaud Compression platform behind emergency generator, un-oiledFound on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.1uly 21, 22, 2016IIIIFound on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.1uly 24, 2016IIIIWith water. Released at night and flew away.1uly 24, 2016IIIIWith water. Released at night and flew away.1uly 24, 2016IIIIWith water. Released at night and flew away.2016UHSPIIIIWith water. Released at night and flew away.2016UHSPIIIII2016WarblerIIII2016WarblerIII<	May 26,									
2016Warbler111Image: Constraint of the start of			1	1						Found dead on Venture Sea supply vessel. Un-oiled.
June 6, 2016LHSP1IIIIJune 25, 2016Brown booby1IIVenture Sea supply vessel. Re-located to box with water. Released at night and flew away.June 27, 2016Brown booby1INoted as rare to see near Sable Island. Flew away.June 27, 2016Osprey11Emaciated and un-oiled.July 16, 2016Northern IIFound on Thebaud Compression platform behind emergency generator, un-oiledJuly 21, 2016IIII2016LHSP1IIJuly 22, 2016IIII2016LHSP1IIJuly 24, 2016IIIIJuly 25, 2016 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
2016LHSP111with water. Released at hight and flew away.June 25, 2016Brown booby11Noted as rare to see near Sable Island. Flew away.June 27, 2016Osprey11Noted as rare to see near Sable Island. Flew away.June 27, 2016Osprey11Noted as rare to see near Sable Island. Flew away.July 16, 2016NorthernNothernEmaciated and un-oiled.July 15, 2016Waterthrush11Pound on Thebaud Compression platform behind emergency generator, un-oiledJuly 21, 2016NorthernNoted as rare to see near Sable Island. Flew away.July 22, 2016ILHSP1IPound on Thebaud Compression platform behind emergency generator, un-oiledJuly 24, 2016ILHSPIIPound on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.July 24, 2016ILHSPIIPound on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.July 24, 2016IIII2016ILHSPIII2016ILHSPIII2016ILHSPIII2016ILHSPIII2016ILHSPIII2016ILHSPIII2016ILHSPIII2016ILHSPIII2016ILHSPI </td <td></td> <td>Warbler</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Warbler	1	1						
June 25, 2016Brown booby1Image: Constraint of the state of the		LHSD	1				1			
2016Brown booby1III<		LIISI	1				1			
June 27, 2016Osprey111Image: Constraint of the synthesis of		Brown booby	1							
July 16, 2016Northern Waterthrush1111Found on Thebaud Compression platform behind emergency generator, un-oiledJuly 21, 2016LHSP111Found on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.July 22, 2016LHSP11Found on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.July 24, 201611Found on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.July 24, 201611Found on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.July 24, 201611Found on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.July 24, 201611Found on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.August 8, 2016Yellow Warbler1Found on Siem Hanne supply vessel. Not oiled.August 24, 2016Tanager1Found on Thebaud platform cellar deck alive. Re- located to box with some water but died shortly after and disposed of overboard.November 10, 2016111Found on Thebaud Compression platform top deck. Birds were fine, noted as rare to see on platform. Flew away.DecemberCedar 5, 20162Found on Siem Hanne supply vessel. Re-located to box deck. Birds were fine, noted as rare to see on platform. Flew away.DecemberFound on Siem Hanne supply vessel. Re-located to box	June 27,									
2016Waterthrush11<			1	1						
July 21, 2016LHSP1III										
2016LHSP11111with water. Released at night and flew away.July 22, 2016LHSP1111Found on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.July 24, 20161111Found on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.July 24, 20161111Found on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.August 8, 2016Yellow111Found on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.August 8, 2016Yellow11Found on Siem Hanne supply vessel. Not oiled.Scarlet Tanager111Found on Thebaud platform cellar deck alive. Re- located to box with some water but died shortly after and disposed of overboard.November 10, 2016111Found on Thebaud Compression platform cellar deck.December 5, 2016Cedar11Found on Thebaud compression platform cellar deck.DecemberCedar 411Found on Thebaud compression platform top deck. Birds were fine, noted as rare to see on platform. Flew away.DecemberCedar2IIIFound on Siem Hanne supply vessel. Re-located to boxDecemberCedar5IIIIIDecemberCedar5IIIIDecember		Waterthrush	1	I						
July 22, 2016LHSP111Found on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.July 24, 2016111Found on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.August 8, 2016Yellow Warbler11Found on Siem Hanne supply vessel. Re-located to box with water. Released at night and flew away.August 8, 2016Yellow Warbler11Found dead on Venture Sea supply vessel. Not oiled.Scarlet August 24, 2016111Found on Thebaud platform cellar deck alive. Re- located to box with some water but died shortly after and disposed of overboard.November 10, 2016111Found on Thebaud Compression platform cellar deck. Un-oiled with an apparent broken neck.December 5, 2016Cedar Waxwing2ImageImage ImageImage ImageDecemberCedar Waxwing2Image ImageImage ImageImage ImageDecemberCedar Waxwing2Image ImageImage ImageImage ImageDecemberCedar Waxwing2Image ImageImage ImageImage ImageDecemberImage ImageImage ImageImage ImageImage ImageDecemberImage ImageImage ImageImage ImageImage ImageImageImage ImageImage ImageImage ImageImage ImageImageImage Image		LHSP	1				1			
2016LHSP1II <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>			-				-			
2016LHSP111111with water. Released at night and flew away.August 8, 2016Yellow1111Found dead on Venture Sea supply vessel. Not oiled.2016Warbler1111Found on Thebaud platform cellar deck alive. Re- located to box with some water but died shortly after and disposed of overboard.August 24, 2016Tanager1111Found on Thebaud platform cellar deck alive. Re- located to box with some water but died shortly after and disposed of overboard.November 10, 2016I11IIIDecember 5, 2016CedarIIIIIDecemberIIIIIIIDecemberIIIIIIIDecemberIIIIIIIDecemberIIIIIIIDecemberIIIIIIIDecemberIIIIIIIDecemberIIIIIIIDecemberIIIIIIIDecemberIIIIIIIIIIIIIIIIIIIIIIIIII <td></td> <td>LHSP</td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>		LHSP	1				1			
August 8, 2016Yellow Warbler111Image: ConstructionScarletScarletImage: ConstructionFound dead on Venture Sea supply vessel. Not oiled.August 24, 2016TanagerImage: ConstructionFound on Thebaud platform cellar deck alive. Re- located to box with some water but died shortly after and disposed of overboard.November 10, 2016Image: ConstructionImage: ConstructionImage: ConstructionNovember 10, 2016Image: ConstructionImage: ConstructionImage: ConstructionDecember 5, 2016Cedar WaxwingImage: ConstructionImage: ConstructionDecemberImage: ConstructionImage: Co										
2016Warbler111Image: Control of the			1				1			with water. Released at night and flew away.
Scarlet August 24, 2016Scarlet TanagerNovember 1Found on Thebaud platform cellar deck alive. Re- located to box with some water but died shortly after and disposed of overboard.November 10, 2016Pine Grosbeak1111December 5, 2016Cedar Waxwing2111DecemberCedar Waxwing2111DecemberCedar Waxwing2111DecemberCedar Waxwing2111DecemberCedar Waxwing1111DecemberCedar Waxwing2111DecemberCedar Waxwing2111DecemberCedar Waxwing1111DecemberCedar Waxwing2111DecemberCedar Waxwing2111DecemberCedar Waxwing1111DecemberCedar Waxwing1111DecemberCedar Waxwing1111DecemberCedar Waxwing1111DecemberCedar Waxwing1111DecemberCedar Waxwing1111DecemberCedar Waxwing1111DecemberCedar Waxwing1111December <t< td=""><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>Frond deed on Western Conservations of Material</td></t<>			1	1						Frond deed on Western Conservations of Material
August 24, 2016TanagerIII	2010		1	I						Found dead on Venture Sea supply vessel. Not offed.
20161111Idisposed of overboard.November 10, 2016Pine Grosbeak111IFound on Thebaud Compression platform cellar deck. Un-oiled with an apparent broken neck.December 5, 2016CedarIIIIIDecemberCedarIIIIIIDecemberCedarIIIIIIDecemberIIIIIIIDecemberIIIIIIIDecemberIIIIIIIDecemberIIIIIIIDecemberIIIIIIIDecemberIIIIIIIDecemberII<	August 24.									
10, 2016Pine Grosbeak11Image: Constraint of the sector of the		Tunuger	1	1		1				
December Cedar 2 Alive, 2 observed together on Thebaud platform top deck. Birds were fine, noted as rare to see on platform. Flew away. December Cedar Found on Siem Hanne supply vessel. Re-located to box										
December Cedar A <t< td=""><td>10, 2016</td><td>Pine Grosbeak</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	10, 2016	Pine Grosbeak	1	1						
5, 2016 Waxwing 2 Image: Constraint of the symplectic co	Dere 1	Calar								
December Found on Siem Hanne supply vessel. Re-located to box			2							
		** axwillg	2							Found on Siem Hanne supply vessel Re-located to box
with watch. Refeased at high and flew away.	19, 2016	LHSP	1				1			with water. Released at night and flew away.

Table 4-2: Retrieval and Release of Birds on SOEP Thebaud, Venture and North Triumph platforms and Venture Sea and Sieme Hanne supply vessels Year 2016

DOAS – Disposed of at Sea. DIC – Died in Care. Rls'd – Released. SFR – Sent for Rehab.

						Capture	ed Alive	;	
				ound					
				ead	Un	-oiled	Oil	ed*	Comments
			D						
		То	O A	0.1	DI				
Date	Species	tal	A S	Oiled *	C	Rls'd	DIC	SFR	Condition Action Taken Fate of Bird
April 29	Northern	tai	5	-	C	Kis u	DIC	SIK	Found Dead on Venture Platform, looked healthy and un-
2015	Waterthrush	2	2						oiled
									Thebaud south stairwell to helideck found -
									Unidentifiable (small wings present, appears to
Sept, 10 -									have been preyed upon by Peregrine Falcon
2015	Unknown	1	1						possibly).
Sept, 17-	Blackpoll	1	1						Found dead on top deck of Thebaud Well Head, no signs
2015	Warbler	1	1						of being oiled or scorched Found dead on Thebaud process cellar deck outside of
									firewater pump enclosure. Shipped to NS Natural History
Sept,17 -	Silver Haired								Museum to Andrew Hebda. (NSM Mammal collection
2015	Bat - female	1							catalogue # 78280).
Sept,27- 2015	Northern Waterthrush	1	1						Found dead on Compression cellar deck West side, laying on deck, un-oiled.
2013	waterunusn	1	1						Panuke Sea Supply Vessel: Dry active bird appearing
									healthy, released immediately alive on site. 43°53.3'N,
Oct 9	UNKN	1				1			060°13.5'W
									Panuke Sea Supply Vessel: Dry active gull appearing
Oct 12	UNGU	1				1			healthy, released immediately alive on site. 43°53.3'N, 060°13.5'W
Oct,16-	0100	1				1			Found dead on NE stairwell of Thebaud Production deck,
2015	LHSP	1	1						no sign of being oiled or scorched.
									Panuke Sea Supply Vessel: Dry active gull appearing
Oct 16	UNCU	1				1			healthy, released immediately alive on site. 43°53.3'N,
Oct 16	UNGU	1				1			060°13.5'W Panuke Sea Supply Vessel: Dry active bird appearing
									healthy, released immediately alive on site. 43°53.3'N,
Oct 16	UNKN	1				1			060°13.5'W
	Red-necked								
Oct,18-	Phalarope Adult non-								Found dead on Thebaud top deck next to heli-pods, noticed injury to one wing, possibly from Falcon. Un-
2015	breeding	1	1						oiled, not scorched.
Oct 18,	Yellow								Found Dead on cellar deck North side of Thebaud in walk
2015	Warbler	1	1						way. Un-oiled not scorched.
Oct,19-	Blackpoll	1	1						Found Dead on cellar deck North side of Thebaud in walk
2015 Nov 2-	Warbler Peregrin	1	1						way. Un-oiled, not scorched.
2015	Falcon	1				1			Observed perched on Thebaud wellhead bridge.
Nov 5-	Blackpoll	*				*			Found dead on Thebaud, no sign of trauma. Un-oiled, not
2015	Warbler	1	1						scorched.
Dec 1-	Peregrin								Observed perched on Thebaud weather deck just below
2015	Falcon	1	<u> </u>			1 SEP		or Rohah	heli-deck.

Table 4-3: Retrieval and Release of Birds on SOEP Thebaud, Venture and North Triumph platforms and Venture Sea and Panuke Sea supply vessels Year 2015

DOAS – Disposed of at Sea DIC – Died in Care. SFR – Sent for Rehab

*Oiled Birds: Both live and dead birds are to be sent to shore

						Capture	ed Alive	<u>`</u>	
			Fe	Found		Cuptur		·	
			D	Dead	Un	-oiled	Oil	led*	Comments
			D						
		_	0						
Data	Guide	To	A	Oiled *	DI	D1.2.1	DIC	CED	Constitution Andrew Telling Free (Dist
Date	Species	tal	S	*	С	Rls'd	DIC	SFR	Condition Action Taken Fate of Bird
May 18,	Seaside	1	1		1				Found on Compression cellar deck by Operator
2014	Sparrow	1	1		1				Dead un-oiled Panuke Sea on location at various Sable
									platforms (30% @ Venture and 70% @ Thebaud) between May 7 and June 4, 2014.
									Late reporting: deck crew didn't see any more
									than 2 dead birds per day and sometimes none
May 7 to									during the day. It was estimated that
June 4,									approximately 40 dead birds were found over
2014	Northern								the 4 week hitch. (20-Northern Waterthrush
hitch	Waterthrush	20	20						and 20-White throated sparrows)
	-								Panuke Sea on location at various Sable
									platforms (30% @ Venture and 70% @
									Thebaud) between May 7 and June 4, 2014.
									Late reporting: deck crew didn't see any more
									than 2 dead birds per day and sometimes none
May 7 to									during the day. It was estimated that
June 4,	White								approximately 40 dead birds were found over
2014	throated								the 4 week hitch. (20-Northern Waterthrush
hitch	Sparrow	20	20						and 20-White throated sparrows)
									Observed on Venture Sea supply vessel, on
Sont 2	Greater								location at North Triumph platform – birds
Sept 3, 2014	Shearwater	2				1			appeared dazed/lethargic, after resting for a few hours, flew away.
Sept 23.	Silearwater	2				1			Found Dead on Venture Production Deck – un-
2014	Goldfinch	1	1						oiled
Sept 26	Blackpoll	1	1						Found Dead on Cellar deck of Thebaud – un-
2014	Warbler	1	1						oiled
Sept 27	Blackpoll		-						Found dead on the cellar deck of Thebaud in
2014	Warbler	5	5						various locations – un-oiled
Oct 1	Blackpoll								Found Dead on Cellar Deck of Thebaud
2014	Warbler	1	1						outside the TSR – un-oiled
Oct 12-	Peregrine								1 observed flying around top deck of Thebaud,
2014	Falcon	1							no other birds spotted
									2 observed at North Triumph Platform chasing
									and eating small sea birds, mainly STORM
Oct 12-	Peregrine								PETRELS
2014	Falcon	2							

Table 4-4: Retrieval and Release of Birds on SOEP Thebaud, Venture and North Triumph platforms and Venture Sea and Panuke Sea supply vessels Year 2014

						Capture	ed Alive	2	
			Fo	Found					1
				Dead	Un	-oiled	Oi	led*	Comments
			D						
		Τ.	0		DI				
Date	Species	To tal	A S	Oiled *	DI C	Rls'd	DIC	SFR	Condition Action Taken Fate of Bird
	White	tur	~		-	10.5 0	210		Observed on Thebaud deck, good condition
Oct 14-	throated								observed on Theodad deek, good condition
2014	Sparrow	1							
									Observed on Venture Sea supply vessel, on
Oct 14-									location at Venture – un-oiled
2014	Goldfinch	1	1						
Oct 19-									Observed by night operator on Thebaud
2014	Cattle Egret	1							wellhead bridge, sleeping
Oct 19-	Virginia								Observed resting on Thebaud production deck
2014	Rail	1							pipe support
Oct 21-	Blackpoll]							Found dead on Thebaud heli-deck landing
2014	Warbler	1	1						South side
Oct 24									Found on Thebaud Compression platform,
2014	Shearwater	1				1			given shelter and time to rest, then released.
Oct 24	Peregrine								2 observed at Thebaud perching on wellhead
2014	Falcon	1							platform
									Observed on Panuke Sea supply vessel, on
0.4.27	Tarahaa								location at Thebaud. Bird appeared to perish of
Oct 27	Leaches	1	1						natural causes, no signs of pollution or other.
2014	Storm Petrel	1	1						Disposed of overboard. Small bird eaten on the forward deck of the
Oct 29									Panuke Sea supply vessel by a Peregrine
2014	UNKN	1							Falcon. Vessel was on location at Thebaud.
Oct 31	Blackpoll	1							Found dead on Thebaud process cellar deck
2014	Warbler	1	1						bird was singed
									Observed on Thebaud process cellar deck alive
									but with singed feathers (at tips), bird was gone
Oct 31	Blackpoll								in the morning. Note: Peregrine Falcons also
2014	Warbler	1							observed on Thebaud at this time.
									Observed on Panuke Sea supply vessel, on
									location at Thebaud. Bird appeared to perish of
Nov 3	Leaches								natural causes, no signs of pollution or other.
2014	Storm Petrel	1	1						Disposed of overboard.
									Observed on Panuke Sea supply vessel, enroute
									from Thebaud Platform to Halifax. Bird
									appeared dazed, lethargic initially, was placed
									in cardboard box and given water (approx 5
									hours). When vessel arrived at Dartmouth
Nov 10	II.								dock, the box was opened on a grassy hillside
Nov 18	Hermit	1				1			and bird flew away within 20 minutes.
2014	Thrush	1				1			

				ound Dead	Un	-oiled	Oi	led*	Comments
Date	Species	To tal	D O A S	Oiled	DI C	Rls'd	DIC	SFR	Condition Action Taken Fate of Bird
Dec 7 2014	Peregrine Falcon	1							1 observed flying around Venture platform.
Dec 19 2014	Great Blue Heron	1							1 observed flying from perch to perch on the Thebaud complex (afternoon). Appeared to be in good shape. There was high winds and some freezing rain and appeared to be taking some shelter from the weather.
Dec 19 2014	Great Blue Heron	1							Observed on Venture Sea supply vessel, on location at Thebaud. The bird landed on board, stayed overnight and flew away in the morning. It appeared to be in good condition.
Dec 26 2014	Dovekie	1	1						Found dead on top deck Thebaud, looked healthy, un- oiled

DOAS – Disposed of at Sea DIC – Died in Care. Rls'd – Released. SFR – Sent for Rehab. ***Oiled Birds: Both live and dead birds are to be sent to shore**

Table 4-5:Retrieval and Release of Birds on SOEP Thebaud platform and Venture Sea supply vessel Year 2013

						Capture	ed Alive	<u>,</u>	
			Found	l Dead	Un	-oiled	Oi	led*	Comments
		Т							
		0							
		t							
	<i>a</i> .	a	DO	Oiled	DI	D1 1 1	DIG	GED	
Date	Species	1	AS	*	C	Rls'd	DIC	SFR	Condition Action Taken Fate of Bird
									Found on Thebaud platform, held in box with water and
									died shortly after. Approximately 12 Northern
April 4,	Northern								Waterthrush were observed and all flew away later that
2013	Waterthrush	1			1				same day.
June 3,	Purple								Found on Venture Sea supply vessel walking on the main
2013	Gallinule	1				1			deck. It was left alone and was gone the next morning.
									Found on Thebaud cellar deck. Bird appeared to perish of
June 13,									natural causes, no signs of pollution (it was wet).
2013	Goldfinch	1	1						Disposed of overboard.
									Found on Thebaud deck at night. Petrel held in box with
June 17,	Storm Petrel								water for rest. Released later that night. It flew away
2013	(WISP)	1				1			without issue from the platform.
September	Northern								Found on Thebaud wellhead top deck. Bird appeared to
11, 2013	Waterthrush	1	1						perish of natural causes, no signs of pollution. Disposed

						of overboard.
October	Ipswich					Found perched on railing of Thebaud cellar deck.
10, 2013	Sparrow	1			1	Appeared in good condition and flew away.
						Peregrine Falcon observed perched on railing of Thebaud
October	Peregrine					wellhead deck. Close by were black wings (appeared to
11, 2013	Falcon	1			1	be Storm Petrel wings).
October	Ipswich					Found perched on railing of Thebaud sub cellar deck.
16, 2013	Sparrow	1			1	Appeared in good condition and flew away.
	G					Found on Theabud cellar deck. Bird appeared to perish of
October	Seaside	1	1			natural causes, no signs of pollution. Disposed of
21, 2013	Sparrow	1	1	 		 overboard.
						Found on Thebaud compression cellar deck. Bird
October	Black and					appeared to perish of natural causes, no signs of pollution.
24, 2013	white warbler	1	1			Disposed of overboard.

DOAS – Disposed of at Sea DIC – Died in Care. RIs'd – Released. SFR – Sent for Rehab. ***Oiled Birds: Both live and dead birds are to be sent to shore**

Table 4-6:Retrieval and Release of Birds on SOEP Thebaud and South Venture platforms Year 2012

					Captured Alive)				
			Found D	Dead	Un-oiled Oiled*		led*	Comments			
		Т									
		0									
		t									
		а		Oile	DI						
Date	Species	1	DOAS	d*	С	Rls'd	DIC	SFR	Condition Action Taken Fate of Bird		
	BLACKPOLL								Bird appeared to perish of natural causes, no signs of		
13SEP	WARBLER	1	1						pollution or other. Disposed of overboard.		
	NOTHERN								Bird appeared to perish of natural causes, no signs of		
	WATER								pollution or other. Bird unreachable.		
20 OCT	THRUSH	1	1								
7 NOV	GOLD								Bird appeared to perish of natural causes, no signs of		
	FINCH	1	1						pollution or other. Disposed of overboard.		
	BLACKPOLL								South Venture: Birds appeared to perish of natural causes,		
14 NOV	WARBLER	2	2						no signs of pollution or other. Disposed of overboard.		
	BLACKPOLL								Bird appeared to perish of natural causes, no signs of		
20 NOV	WARBLER	1	1						pollution or other. Disposed of overboard.		
									Found one Storm Petrel on Thebaud Compression. Held		
	STORM								captive for 24hrs. Fed and nourished and released on site.		
20 NOV	PETREL	1				1			Flown away successfully.		

DOAS – Disposed of at Sea DIC – Died in Care. Rls'd – Released. SFR – Sent for Rehab. ***Oiled Birds: Both live and dead birds are to be sent to shore**

Common Name	Province	Province Number Collected		Final Disposition of Specimens Collected	
		Birds	Eggs	Nests	
Blackpoll warbler	Nova Scotia	35	0	0	Disposed of overboard
Leach's Storm Petrel	Nova Scotia	15	0	0	Disposed of overboard
Goldfinch	Nova Scotia	1	0	0	Disposed of overboard
Pine Siskin	Nova Scotia	1	0	0	Disposed of overboard

Table 4-7	Specimens	Salvaged	in 2011
-----------	-----------	----------	---------

In 2011, the 52 deceased birds discovered on the offshore platforms were collected mainly through the spring and fall; a few in the summer and very rarely during the winter months. Many of the birds that are reported above were not intact and presumed to have been preyed upon by at least one peregrine falcon that was spotted on the Thebaud platform in late summer and early fall.

4.6 CONCLUSIONS

EMC will continue to report the numbers of birds and species physically impacted by the presence of the offshore facilities, by documenting those salvaged, released and deceased. The number of birds found in 2016 was up slightly from the previous year (21) found in 2016, (17) found in 2015, (71) found in 2014, (10) found in 2013, (7) found in 2012, and (52) found in 2011. It should be noted that 16 of the 71 birds observed in 2014 were released and did not perish offshore, 6 of the 17 birds observed in 2015 were released and did not perish offshore and 9 of the 21 birds observed in 2016 were released and did not perish offshore.

It has been observed that 2016 had low instances of periods of poor visibility (foggy weather) offshore, with the exception of a few days during the spring and fall. Visibility is tracked hourly in the offshore area, as transportation via helicopter is impacted greatly by fog events. SOEP was able to complete approximately 140 flight hours per month in 2016. In 2013, SOEP experienced its highest level of successful flight segments in the project's history - it averaged 155 flight hours per month due to clear weather. The decrease in bird observations may be related to clear weather periods during the spring and fall migration months, thus less attraction of birds to the lighted structures and flare.

Section 5.2.1.9 of the SOEP – EIS Vol. 3 predicted that "Lights [from work lights and gas flares] may attract migrant bird species, especially in fog and/or low cloud and rain." The 2013, 2014, 2015 and 2016 data would appear to align with this prediction.

4.7 CURRENT AND FUTURE MONITORING

EMC completed its participation in the implementation and testing of new monitoring techniques around offshore platforms in mid-2014. Dr. Phil Taylor and Dr. Rob Ronconi, Acadia University, concluded studies with Encana's Deep Panuke project on the use of instrument-based automated monitoring tools to enhance the monitoring and study of bird activities and bird attraction to offshore platforms. This technology was thought to overcome detection limitations inherent in observer-based monitoring, particularly during periods of poor visibility (ie. fog/darkness).

EMC field staff will continue to participate in the offshore monitoring of physically tagged birds in the offshore areas.

EMC understands that in the future, potential tagging may occur on Ipswich Sparrows and Storm Petrels. Should monitoring platforms be required at that time to accommodate radio tracking receivers, EMC is amenable to installing these on the Project supply vessels in order to support this potential research.

4.8 REFERENCES

Wilhelm, S.I. and A.W. Boyne (2006) Evaluation of seabird observations collected from 2001-2003 by the Oil and Gas Observer Program. Canadian Wildlife Service Technical Report Series No. 464. Atlantic Region. vii + 26 pp.

5. BEACHED SEABIRD SURVEYS

Photos: Friends of the Green Horse Society

5.1 RATIONALE

Since 1993, regular surveys for beached oiled birds have been conducted on Sable Island to monitor trends in numbers and rates of oiling in beached seabirds, and to collect specimens of contamination for gas chromatographic analysis to generically identify oil types. Results of analysis of oil samples collected during 1996-2005 have been reported in [1]. Results of beached surveys conducted during 1993-2009 are reported in [2]. Also, corpses of fulmars and shearwaters collected during the surveys have been used in a study of plastic ingestion, and the results are reported in [3].

5.2 GOAL

By monitoring numbers and oiling rates in beached seabirds on Sable Island, industry and regulators can identify and correct potential sources of oil contamination arising from industry operations.

5.3 OBJECTIVES

There are two main objectives of the beached bird surveys:

- To monitor trends in oiling rate in beached seabird corpses; and
- To generically identify oil types found on seabird feathers and in pelagic tar.

5.4 METHODOLOGY

Zoe Lucas, biologist and long-time resident of Sable Island, conducted the beach bird surveys on Sable Island. Table 5-1 provides the methodology for the beached seabird survey.

Parameter	Sampling Methodology
Survey date:	Between January 1 and December 31, 2016, eight surveys for beached seabirds were conducted on Sable Island. No survey was conducted in February, March, April and December.
Number of Surveys	8
Type of Sample:	Species identification, corpse condition and extent of oiling were recorded for seabird specimens. When possible, the time since death was estimated based on freshness of tissues and degree of scavenging and sandblasting. The oiling rate was calculated using only complete or largely intact corpses (i.e. with >70% of body intact) during 2016. The presence and degree of oiling of complete corpses was recorded as a code using a four-point scale: (0) clean plumage; (1) slight surface oiling, or <10% of the body oiled; (2) moderate oil, penetrating to the base of feathers,

Table 5-1: Beached Seabird Field Survey Methods

	10-25% oiled; (3) heavy oil, >25% oiled. Incomplete corpses, with less than 70% of the plumage present, were categorized as Code 4.
Sample Preparation	Oil samples were packaged in aluminum foil, labeled, kept frozen for periods ranging from one week to several months, and delivered to the laboratory for gas chromatographic analysis (Maxxam Analytics). Interpretation of GC/FID results were conducted by MacGregor & Associates (Halifax) Ltd.
Number of Samples	0
Equipment:	Normally collected by hand using metal foil containers

5.5 ANALYSIS

Maxxam Analytics Inc. conducted the analyses of one oil sample collected from the feathers of a beached (but incomplete) seabird corpse in January 2016. This information was not included in the oiling rate, as it was an incomplete corpse.

Table 5-2: Analytical Method for Oiled Seabirds

Parameters	Analysis Method
HCR, MHCP, URM, URM/MHCP ratio	gas chromatograph (GC/FID)

Oil specimens were solid samples (oiled seabird feathers) and were extracted with Hexane. This extract, filtered to remove solids, was injected on a glass capillary column (HP5-MS) on an HP 6890 Gas Chromatograph with Flame Ionization Detector (GC/FID). Outputs from the GC were retrieved on HP Chemstation software, with chromatograms produced and assessed manually.

Concurrently, standard oils such as Marine Diesel, Jet (Helicopter) Fuel, Heavy Fuel Oil (Bunker C), Arabian Crude Oil, Lubricating Oil and n-alkane standards (C12 to C36) were run under the same conditions. This permitted identification of the n-alkane peaks in the sample and standard oil chromatograms. The n-alkane maximum, range of n-alkanes and unresolved peak maximum were identified by carbon number and relative response.

These results were compared to standard oils to permit identification of oil within that class and determine roughly degree of weathering or time at sea. Oils with mixtures of fuel and lube oil were identified as bilge or slop tank sources, oils identified as heavy fuel oil or marine diesel oil were identified as fuel oil sources, and those identified as crude oil were identified as tanker cargo oil sources.

For oiling rate and number of clean birds/km (see Section 5, Figures 1 - 7), annual trends were first analyzed with generalized linear models (with Poisson links for

densities and binomial links for oiling rate), but yielded excessive overdispersion even after corrections. Thus instead data were transformed (log transformation for densities, arcsine transformation for oiling rate) and analyzed by least squares regression. Statistically significant trends (P < 0.05) are marked with an asterisk (*).

Laboratory QA/QC

Maxxam Analytics is a CALA facility (Canadian Association for Laboratory Accreditation).

5.6 RESULTS

During 2016, the corpses and fragments of 149 beached seabird corpses were collected on Sable Island. Alcids accounted for 28.9% of total seabird corpses recovered. Of the 149 corpses, 98 (65.8%) were complete (i.e. with >70% of body intact, Codes 0-3). Table 5-3 shows totals & linear densities for clean complete corpses (Code 0) for winter (November-April) and summer (May-October), and annual oiling rate based on complete corpses (i.e., with >70% of body intact, Codes 0 - 3).

The overall oiling rate for all species combined (based on complete corpses, Codes 0 to 3) was 0.0% (compared with 0.5% in 2015 and 3.2% in 2014). In particular, the oiling rate for alcids was 0.0% (compared with 1.7% in 2015 and 7.9% in 2014).

None of the 98 complete corpses were oiled, and of the 51 incomplete corpses (Code 4) one—an Atlantic Puffin, comprised of wings, tail and feet, and found in January—showed a trace of oil on the tail. Since the oiling rate is based on complete corpses, this specimen is not represented in the reported oiling rate of 0.0% for alcids. Analysis of the oil determined it to be engine room bilge, possibly from a coastal or supply vessel running on Marine Diesel, and the sample was relatively unweathered (likely <2 weeks old), indicating a nearby source. (Clive MacGregor, pers. comm. May 2016).

Table 5-3: Beached Seabird Corpses Collected on Sable Island During 2016

Oiling scale:

(0) Complete corpse, clean plumage

(1) Complete corpse, slight surface oiling, or <10% of the body oiled

(2) Complete corpse, moderate oil, penetrating to the base of feathers, 10-25% oiled

(3) Complete corpse, heavy oil, >25% oiled

Bird species &	Total ¹	Code 0	Code 0	Code 0	Code 0	Oiling
groups	number	number	number	number/km	number/km	rate %
	corpses	Winter	Summer	Winter	Summer	
Northern Fulmar	9	2	3	0.0147	0.0074	0
Shearwater	41	0	37	0	0.0907	0
Northern Gannet	20	8	10	0.0588	0.0245	0
Larus Gulls	22	8	13	0.0588	0.0319	0
Alcids ²	43	7	6	0.0515	0.0147	0
Other species ³	14	1	3	0.0074	0.0074	0
Common & Thick-	9	5	4	0.0368	0.0098	0
billed Murres ⁴						
Dovekie ⁴	9	1	1	0.0074	0.0025	0

(4) Incomplete corpse, less than 60% of the plumage present

¹ Codes 0 - 4 combined (i.e., complete and incomplete corpses).

² All alcid species combined (Razorbill, Atlantic Puffin, Common and Thick-billed Murre, Dovekie, and unidentified large alcids).

³ Other species: one Double-crested Cormorant, three Leach's Storm-petrel, four Common Tern, six Black-legged Kittiwake - none were oiled.

⁴ Common & Thick-billed Murres and Dovekies are included in the overall totals for Alcids.

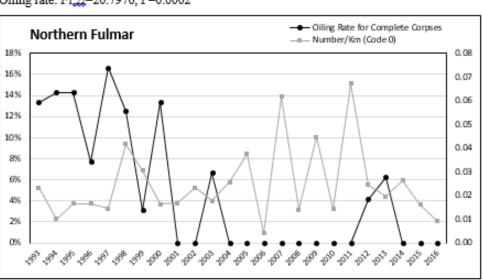


Figure 5.1. Northern Fulmar Corpses/km: F1,22=0.4460, P=0.5112 Oiling rate: F1,22=20.7976, P=0.0002*

Figure 5.2. Shearwaters Corpses/km: F1,22=0.0542, P=0.8181 Oiling rate: F1,22=9.5823, P=0.0053*

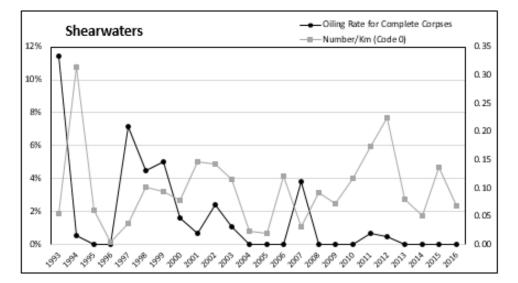


Figure 5.3. Northern Gannet Corpses/km: F1,22=0.0610, P=0.8071 Oiling rate: F1,22=9.6309, P=0.0052*

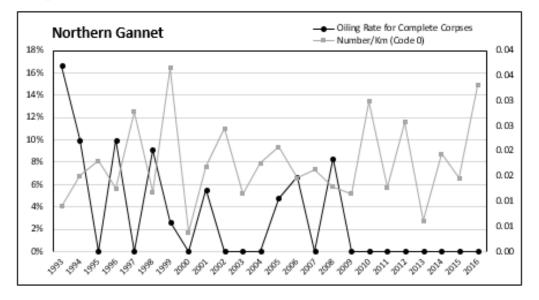


Figure 5.4. Larus Gulls Corpses/km: F1,22=0.0612, P=0.8069 Oiling rate: F1,22=16.4500, P=0.0005*

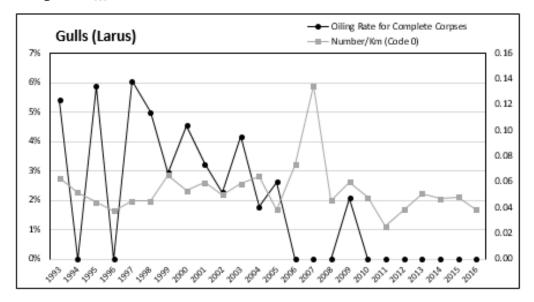


Figure 5.5. Alcids (all species combined) Corpses/km: F1,22=0.1988, P=0.66 Oiling rate: F1,22=57.9611, P<0.0001*

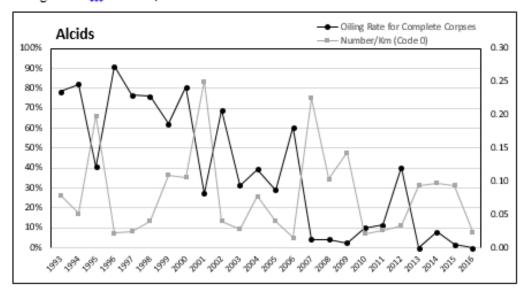
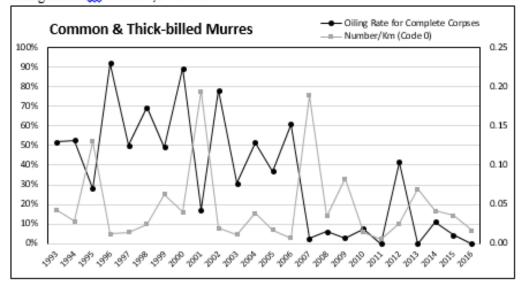
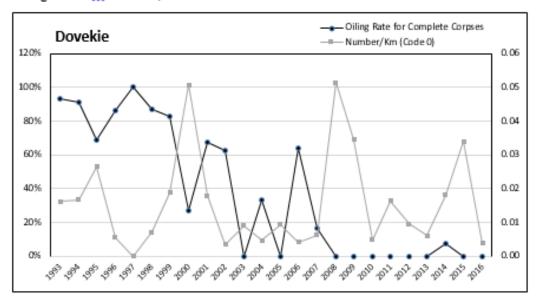




Figure 5.6. Thick-billed & Common Murres Corpses/km: F1,22=0.1321, P=0.7198 Oiling rate: F1,22=24.1756, P<0.0001*

7

Figure 5|7. Dovekie Corpses/km: F1,22=0.1053, P=0.7486 Oiling rate: F1,22=59.8903, P<0.0001*

5.7 CONCLUSIONS

The overall oiling rate for all species combined (based on complete corpses, Codes 0 to 3) was 0.0%. The oiling rate for alcids was 0.0% (compared with 1.7% in 2015).

None of the 98 complete corpses were oiled, and of the 51 incomplete corpses (Code 4) one—an Atlantic Puffin, comprised of wings, tail and feet, and found in January—showed a trace of oil on the tail. Since the oiling rate is based on complete corpses, this specimen is not represented in the reported oiling rate of 0.0% for alcids. Analysis of the oil determined it to be engine room bilge, possibly from a coastal or supply vessel running on Marine Diesel, and the sample was relatively unweathered (likely <2 weeks old), indicating a nearby source. (Clive MacGregor, pers. comm. May 2016).

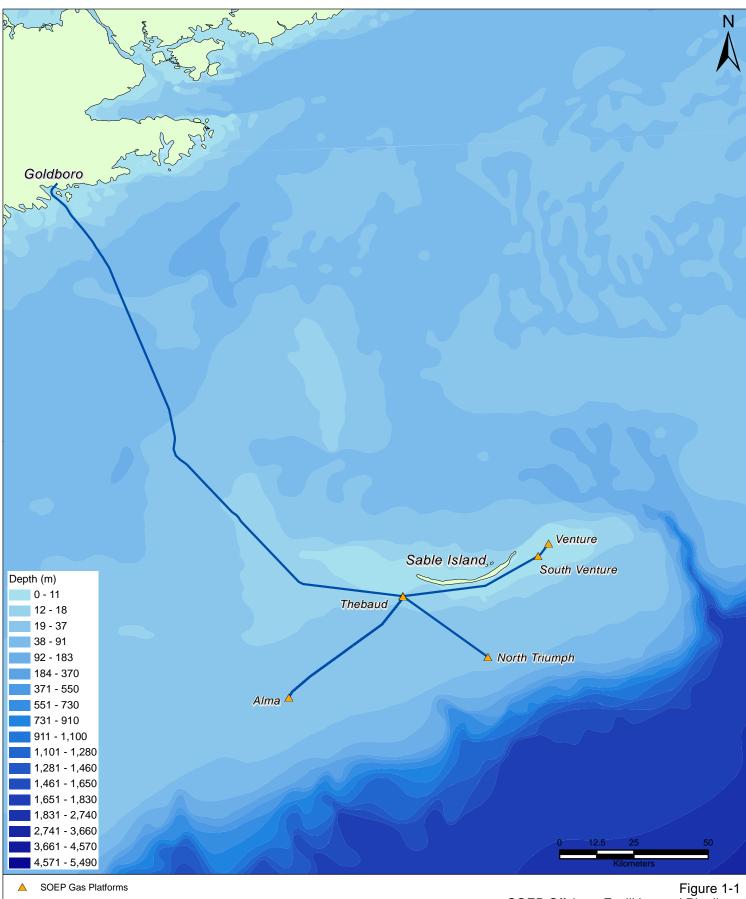
5.8 REFERENCES

[1] Lucas, Z. and C. MacGregor. 2006. Characterization and source of oil contamination on the beaches and seabird corpses, Sable Island, Nova Scotia, 1996-2005. Marine Pollution Bulletin 52: 778-789.

[2] Lucas, Z., A. Horn and B. Freedman. Beached bird surveys on Sable Island, Nova Scotia, 1993 to 2009, show a recent decline in the incidence of oiling. Manuscript submitted to the Proceedings of the Nova Scotian Institute of Science, January 2012, and in review.

[3] Bond, A.L., J.F. Provencher, P.-Y. Daoust and Z.N. Lucas. 2014. *Plastic ingestion by fulmars and shearwaters at Sable Island, Nova Scotia, Canada.* Marine Pollution Bulletin 87: 68-75.

7. SUMMARY AND CONCLUSIONS



The summary and conclusions for 2016 EEM Program specific components are as follows:

- Produced Water at the Alma, South Venture, Venture and Thebaud platform locations was interpreted as being 'toxic' based on 2016 bioassay results of EMC samples.
- Test results since 2005 show that chemical and toxicity levels can vary widely over time and location in large part due to varying reservoir characteristics.
- Toxicity of produced water samples from SOEP platforms is not considered an environmentally relevant factor of concern based on findings in a DFO COOGER research study (2010) which found that potential contaminants in the relatively small PW discharges from SOEP platforms are diluted rapidly to no-effects concentration levels within 10's of metres of the subsurface discharge caisson.
- Further to SOEP's Canadian Wildlife Permit LS 2560 requirements, an annual report detailing the numbers of birds salvaged, released and deceased on the platforms provided monitoring data on those species observed on the offshore facilities.
- There was a slight increase in perished bird observations in 2016 (21) versus 17 found in 2015. These trends seem to be related to documented clear weather periods during the spring and fall migration months.
- There were no threshold or air quality standard breaches for O3 in 2016. However, there was a spike in H2S of 6.01 ppbv on 17/07/16. This H2S spike was above the operating threshold value of 3.11 ppbv. However, it was well below the 1-hr Nova Scotia air quality objective of 30 ppbv. Scrutiny of the air mass back trajectories for this day showed that air flow passed over both the Deep Panuke and Thebaud platforms preceding and during observations on Sable Island.
- On October 5, 2016 there was an elevated measurement of NOx of 7.16 ppbv. This happened a few days after the ExxonMobil field wide maintenance shutdown. The air flow during the elevated event observations was directly over the Thebaud platform. Therefore, it could be a possible source. However, NOx level was below the operational spike threshold set at 17 ppbv and well below the Canada Ambient Air Quality Objective of 213 ppbv.

- The overall oiling rate for all species combined (based on complete corpses, Codes 0 to 3) was 0%. The oiling rate for alcids was 0% (compared with 1.7% in 2015).
- None of the 98 complete corpses sampled in 2016 were oiled and of the 51 incomplete corpses collected (Code 4) one—an Atlantic Puffin, comprised of wings, tail and feet, and found in January—showed a trace of oil on the tail. Since the oiling rate is based on complete corpses, this specimen is not represented in the reported oiling rate of 0% for alcids. Analysis of the oil determined it to be engine room bilge, possibly from a coastal or supply vessel running on Marine Diesel, and the sample was relatively unweathered (likely <2 weeks old), indicating a nearby source.

Appendix for Section 1

- SOEP Gas Pipeline

Figure 1-1 SOEP Offshore Facilities and Pipelines SOEP EEM Report 2011 ExxonMobil Canada

VEC / EEM	199	200	
Component	Program	Observations	Program
Benthic Boundary Layer	Frequency: baseline and semi-annual Location: 38 stations per field Parameters : SPM, barium in SPM	No evidence of drill waste floc as modeled by bblt model following 3 years of study Specialized analytical equipment not readily available	frequency based on drilling activity
Sediment Toxicity	Frequency: baseline and semi-annual Location : 8 stations at Venture, North Triumph, South Venture, 10 stations at Thebaud, and 5 Gully stations Parameters : Amphipod survival Echinoderm fertilization Bioluminescence (Microtox)	Microtox test showed low sensitivity and sea urchins fertilization produced inconsistent results Amphipod tests correlated with TPH concentration in sediments; continued with amphipod tests	Frequency: annual Location: 14 stations per field Parameter: amphipod survival
Sediment Chemistry	Frequency : baseline and semi-annual Location : 38 stations per field, 5 Gully stations Parameter : full (24) metal scan, grain size, C ₆ -C ₃₂ hydrocarbons, BTEX,TIC, TOC, ammonia and sulphide.	No statistical significant difference detected with distance or survey times except in barium and total petroleum hydrocarbons (TPH) (C ₁₁ -C ₃₂) No change in: - Sediment metal concentration (other than Ba); - Carbon concentrations; BTEX; or - Sediment grain size	Frequency : annual Location: In 2001, dropped mid-field stations (i.e., 5, 6, 7.5, 9, 10, 12 km rings) and increased axes sampling at 250 and 500 m rings. Resolution not improved with increased sampling, so dropped minor axes stations at 250 and 500 m. In 2002 – 22 stations per field, 5 Gully Parameter: Analyze for key indicators Ba, TPH, ammonia and sulphide.
Benthic Habitat and Benthos	Frequency : six months Location: 38 Stations per field Parameters : Epibenthic megafauna at Thebaud and Venture by photography (still and video) Epibenthic megfauna and infauna at North Triumph	Characterized drill cuttings piles for recovery assessment in conjunction with storm scour evaluations Collected samples of cuttings piles Added ROV inspection during EEM surveys to evaluate habitat and communities	Frequency (biota): annualFrequency (cuttings piles): quarterly4 and storm event basedLocations: 22 stations per fieldParameter:Epibenthic megafauna at Thebaud and Venture byphotography (still and video)Epibenthic megfauna and infauna at North Triumph
Fish and Fish Habitat	Not part of original EEM program as fish and fish habitat were not scoped as a VEC	Added to EEM Program as a result of requirement under HADD Authorization	Frequency: Annual Location: Tier I platforms and marine pipeline (biannual) Parameter: ROV inspection of growth, percent coverage After four years, the colonization of the platform jackets and protective mattresses generated approximately ten times the original biomass of attached flora and fauna, yielding a net gain in production of 68,618 kg The platforms and subsea pipeline have also created a 'reef effect' by attracting aggregations of a variety of mobile fish and invertebrate species.

1 - Scallops in cages only

2 - North Triumph/Alma locations only

3 - Thebaud only (caged)

4 - Thebaud location only

Note: EEM program was re-evaluated in 2004; no field work undertaken for that year.

001-2003

Observations

No change

Amphipod survival tests continue to correlate with TPH concentration in sediments.

No change in protocol other than species change due to unavailability of original test organism.

Venture stations back to baseline at 250 m

Thebaud and North Triumph stations showed elevated TPH and barium out to 500 m along direction of prevailing current.

No statistical change in epibenthic megafauna at Venture, Thebaud and North Triumph

Observed apparent enrichment effect of infauna at North Triumph (increase in species numbers, abundance and diversity) at 250 and 500 m during/after drilling. Returned to background levels twelve months after drilling completed.

Cuttings piles have been relatively stable at Venture and Thebaud,; No cuttings pile created at North Triumph

No change

VEC / EEM	199	20		
Component	Program	Observations	Program	
Taint and Body Burden	 Frequency: Quarterly³ (mussels) six months¹(scallops) Locations: Mussels moored at 250, 500, 1000, 2000, 5000, 15000 and 20000 m from Thebaud, Venture and North Triumph, plus two moored reference stations Wild scallops collected from beds closest to each platform Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes Sensory Evaluations 	Integrity of moorings were problematic due to sediment transport (burial), interference with supply vessel operations and pipeline construction. Changed mooring depth locations from surface and bottom positions to mid water as operations changed from drilling to producing Reduced mooring locations to platform and near field	Frequency: Quarterly ⁴ (mussels) Annual ² (snow crabs) annual ² (scallops) Location: Collect surface mussel samples from Venture and Thebaud wellhead leg and Thebaud nearest to overboard discharge caisson (C3) leg Kept the 1000 m mussel mooring at Venture. Parameters: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes Sensory Evaluations	
Produced Water	Not in production phase	Collected discharge samples at 'end of pipe' (near mouth of discharge caisson at Thebaud) and carried out bioassay toxicity testing using Microtox, 3 -spine stickleback and sea urchin. Estimated Zone of Influence (ZOI) of Monethylene Glycol (MEG) discharged at Thebaud	 Frequency: Once in 2001 Location: Thebaud, in receiving water adjacent to caisson Parameter: Toxicity on three-spine stickleback, sea urchin and Microtox. Observed no apparent toxic effects of produced water based on field observations and laboratory testing of samples collected near the mouth of the discharge caisson at Thebaud 	
Marine Mammals and Seabirds	 Frequency: Daily Location: Strategic placement of independent fishery observer on all major construction vessels; full-time at Thebaud when space-permitted. Parameter: Regular observations of marine mammals and seabirds from facilities 	Strategic placement on drilling rigs; full-time observer coverage on Thebaud during Operations phase No major incidents during construction.	 Frequency: Daily Location: Thebaud Parameter: Regular observations of marine mammals and seabirds from platform 	
Air Quality	 Frequency: Continuous on 4-6 week change out Location: Sable Island – Weather Station Parameter: Particulates, VOCs, NOx 	No changes	In 2001 discontinue because sandy salt environment corroded equipment and interfered with filters	
Vessel Traffic	Development and adherence to the Codes of Practice restricts air and vessel traffic near the Gully, Sable Island and Country Island	No change	No change	
Noise	During pile driving at Venture (1998) and pipe laying (1999) near Country Island and DREA ambient noise report (1999)	The loudest measured noise levels associated with offshore construction activities (i.e. pile driving and pipe-laying) were predicted not to effect whales in the Gully and had no observed effects on tern breeding on Country Island	No monitoring] j

1 - Scallops in cages only

2 - North Triumph/Alma locations only

3 - Thebaud only (caged)

4 - Thebaud location only

Note: EEM program was re-evaluated in 2004; no field work undertaken for that year.

01-2003

Observations

- Adapted program to include other potential sentinel species
- No evidence of taint due to hydrocarbons in scallops and mussels. No apparent health effects on mussels.
- In 2001 included snow as potential sentinel species crabs at North Triumph. No evidence of hydrocarbons therefore discontinued sampling in 2002.
- In 2002 included Jonah crabs as potential sentinel species at Thebaud. Found evidence of drilling mud (Novaplus) in tissue. Additional Jonah crabs collected in 2003 for analysis.
- Continue wild scallops at closest beds

Insufficient volumes of produced water to justify further sampling and analysis

In Spring 2003, full time observers on Thebaud were discontinued. Observers were placed on vessels and other platforms as required Few incidents reported of effects of operations (i.e., flaring, attraction to lights, collisions, etc) on seabirds, results to-date, inconclusive. ; and

No obvious avoidance of platforms by marine mammals. No observer data after May 2003

With support from the offshore oil and gas industry, Environment Canada installed real time air quality samplers at Sable Island Weather Station.

Initiated platform-based twice daily visual monitoring of flare plume at Thebaud.

No change

No routine monitoring of marine noise was carried out near platforms during drilling or operations

VEC / EEM		20		
Component	Program	Observations	Program	
Sediment Toxicity	Frequency: annual Location: 3 stations at South Venture, 3 stations at Thebaud and 4 Gully stations at MPA boundary Parameters: Amphipod survival Echinoderm fertilization Bioluminescence (Microtox)	Amphipod tests <i>Rhepoxynius abronius</i> No toxic responses since 2003, as correlated to sediment toxicity back to baseline	Discontinued - see 2005 observations	N/A
Sediment Chemistry	Frequency: annual Location: 3 stations at Thebaud, 3 stations at South Venture and 4 Gully stations Parameter: TPH, barium, strontium, mercury, ammonia, sulfides and aluminum.	Sediment chemistry back to baseline condition	Discontinued - see 20005 observations	N/A
Benthic Habitat and Benthos	Frequency: annual Location: Thebaud Parameters: cutting pile estimation	ROV inspection during EEM surveys to evaluate habitat and communities: -no commercial or at-risk species of fish or crustacean species identified. -jacket legs and cross members generally 100% covered in marine growth - mostly blue mussels. -large schools of cunners near platform No cuttings pile evident in 2005.	Frequency: annual Location: Thebaud and pipeline corridor in Strait of Canso Parameters: cutting pile estimation, Analysis of videotape to identify distribution of associated marine life with focus on commercial and species-at-risk	Client sup No cutting No marin Cod schoo species ar
Fish Health	Not part of original EEM program as not scoped as a VEC. Frequency: Annual Location: Thebaud: Parameters: mixed-function oxygenase (MFO), gross pathology and histopathology of cod.	Using a weight of evidence approach, comparable results were obtained at both sites indicating that the health of cod which are possibly aggregating at Thebaud, was similar to that at the reference site.	Discontinued - see 2005 observations	N/A
Fish and Fish Habitat	 Not part of original EEM program as fish and fish habitat were not scoped as a VEC. Frequency: Opportunistic/ supplied UW videotape acquired by ROV camera Location: 26" export pipeline Parameter: Fish density near platform jacket and along randomly selected exposed sections of subsea pipeline to shore 	Several small redfish were observed on the undersides of span sections of the 26" export pipeline. Numerous snow crabs were observed on and near exposed sections of the pipeline (maximum density KP 20 -80) ~ 12 snow crabs/km). Large schools of cunners (a non-commercial fish species) were observed in the immediate vicinity of the Thebaud platform.	 Frequency: Opportunistic/ supplied UW videotape acquired by ROV camera Location: 26" export pipeline Parameter: Fish density near platform jacket and along selected exposed sections of subsea pipeline to shore 	No specie Colonizat

1 - Scallops in cages only
 2 - North Triumph/Alma locations only

3 - Thebaud only (caged)

4 - Thebaud location only

Note: EEM program was re-evaluated in 2004; no field work undertaken for that year.

2006

Observations

supplied ROV video taken of the cutting pile and platform.

tings pile evident.

rine species at risk observed.

chool observed around platforms. Cunner also observed but an inshore s and not commercial species

ccies at risk or corals observed along pipeline

zation of pipeline as in previous years

VEC / EEM		20		
Component	Program	Observations	Program	
Taint and Body Burden	Frequency: Annual mussels and scallops Locations: Jacket legs at Thebaud for mussels and nearest bed for scallops Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes Sensory Evaluations (scallop only)	 Higher TAH attributed to biogenic (phytoplankton) in mussels and scallops TAH concentration found in Western Bank, Superstore (Control) and Sable Bank scallops as well as Thebaud and Superstore mussels due to phytoplankton. Sensory evaluation by triangle test showed no significant difference in the odour and flavour of the Sable Bank scallops as compared to the Superstore scallops. 	Scallop sampling/sensory evaluation discontinued - see 2005 observations Body burden of mussels continued on Thebaud jacket legs.	N/A Logistical
Produced Water	 Frequency: Annual for toxicity, semi annual for chemistry. Location: Thebaud Parameter: trace metal composition, HC concentration, IC₅₀ and aquatic LC₅₀ toxicity testing, as required by OWTG (2002). 	 TPH well below OWTG limits Chemistry data consistent between sampling events. Microtox, sea urchin fertilization and stickleback test proved toxic results Produced water quality variable due to variability in contributions from other platforms. 	Frequency: Semi annual for chemistry, Annual for toxicity Location: Thebaud, Alma, South Venture and Venture Parameter: trace metal composition HC concentration, IC ₅₀ and acquatic LC ₅₀ toxicity testing as required by OWTG (2002).	Produced metals and year to year The total produced limits of 3 The result from Thet sticklebac South Ver It is surmi hydrocarb Island, the backgrour
Marine Mammals and Seabirds	 Frequency: Annual for marine noise level monitoring and marine mammal observations. Four seabird surveys/year (CWS surveys) Monthly beach survey Location: 250m, 500m, and 1000m from the Venture platform and one (1) reference station near western boundary of Gully MPA CWS seabird surveys from supply boats on transects between Thebaud platform and shorebase and reference areas. Oiled beach seabirds studies ongoing on Sable Island 	 Underwater acoustic environment dominated by noise from standby/supply vessels. Results indicated that underwater noise levels generated by coincident drilling/production operations attenuated to below threshold for adverse effects on marine mammals (180 dB re 1 μPa) 250-300 m from sound source (i.e., Venture platform) No obvious evidence of attraction to platforms. Results, to-date inconclusive. No petroleum hydrocarbon or condensate from any NS offshore installations were found on oiled seabirds 	 Frequency: Marine mammals only observation during pile driving for new compression platform at Thebaud. Monthly beached bird surveys Opportunistic transect surveys Location: Seabird surveys from supply boats on transects between Thebaud platform and shorebase and reference areas. Oiled beach seabirds studies ongoing on Sable Island 	A few who There was platform. Sable Islan Of the 14 the 13 san would be inconclusi SOEP fact
Air Quality	Frequency: Realtime continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	Air monitoring data from this project has shown that Sable island can be affected by long range transport of air pollution from the continental mainland. Monitoring program and observations of various emission producing activities on and around the island do not yet allow Environment Canada to confirm whether the effects of offshore activities can be measured on the island.	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	Flare data Awaiting pers.comr (i.e., SO2, levels than high on Sa

1 - Scallops in cages only

2 - North Triumph/Alma locations only

3 - Thebaud only (caged)

4 - Thebaud location only

Note: EEM program was re-evaluated in 2004; no field work undertaken for that year.

2006

Observations

cal issues prevented collection of mussels

ed water at Thebaud, Venture and Alma have elevated levels of some and each platform is relatively consistent in chemical signature from year.

al petroleum hydrocarbon concentrations in the various samples of ed water at Thebaud, Venture and Alma were well below the OWTG f 30 mg/L (30 days) and 60 mg/L (24-hour) for oil in water.

ults of the 96 hour LC_{50} and IC_{50} tests indicate that produced water nebaud, was slightly more toxic than in 2006 for stickleback. For eack Venture had higher toxicity than Thebaud which was higher than Venture. These platforms are also toxic to Mictotox and sea urchins.

mised that the cause of the toxicity may be due to petroleum arbons. Given the hydrodynamic marine environment near Sable the chemical constituents of produced water will likely be diluted to bund levels within a few metres of the mouth of the discharge caisson.

vhales and dolphins(no species-at-risk) observed around construction.

vas no evidence that seabirds were attracted to the SOEP offshore n. Distribution of seabirds appeared to be independent of proximity to sland. Results, to-date, inconclusive.

14 oiled birds collected from Sable Island beach and analyzed, none of samples contained light or mid-range distillate fuels or condensates that be typical of oils produced on SOEP facilities. One sample was usive as to its source in the region, however there were no spills from facilities for several months prior to the contaminated specimen.

ata collected and provided to EC.

ng data from EC for further analysis and reporting (M. Hingston, EC. mm.) Preliminary analysis to date by EC indicates that all pollutant D2, NOx) concentrations measured on Sable Island are at much lower han in Halifax with the exception of PM2.5 which is believed to be Sable Island due to sea-salt aerosols

VEC / EEM		2007	2008		
Component	Program	Observations	Program	Observations	
Sediment Toxicity	Discontinued since 2005 (see 2005 observations) DFO conducted sediment samples at Thebaud and The Gully 2006 and 2007	N/A No toxic responses (based on amphipod survival) were observed.	Discontinued since 2005 (see 2005 observations)	N/A	
Sediment Chemistry	Discontinued since 2005 (see 2005 observations) DFO conducted sediment samples at Thebaud and The Gully 2006 and 2007	N/A Barium concentrations slightly above baseline levels out to 500 m from Thebaud platform at along direction of prevailing current. TPH concentrations at baseline levels.	Discontinued since 2005 (see 2005 observations)	N/A	
Benthic Habitat and Benthos	Frequency: annual Location: Thebaud Parameters: cutting pile estimation, Analysis of videotape to identify distribution of associated marine life with focus on commercial and species-at- risk	No cuttings evident in 2007	Frequency: annual Location: Thebaud Parameters: cutting pile estimation, Analysis of videotape to identify distribution of associated marine life with focus on commercial and species-at-risk	No ROV video taken in 2008 of the cutting pile Colonization on pipeline and Strait as in previous reports. No species at risk observed.	
Fish Health	Detailed fish health analysis discontinued since 2005 (see 2005 observations) Summarize fish health indices obtained from 2007 DFO bottom trawl groundfish survey for selected sampling station(s) on Sable Island Bank. Delineate and characterize thermal plume from compression platform. Investigate possible attraction of fish to thermal plume.	N/A DFO was unable to provide fish condition factor data (as a potential measure of fish health) since there were no random bottom trawl sampling stations in close proximity to any of the SOEP offshore platforms in 2007 (M. Showell, DFO, pers.comm.). Continued discussions with COOGER on meaningful and achievable approach	 Detailed fish health analysis discontinued since 2005 (see 2005 observations) Summarize fish health indices obtained from 2007 DFO bottom trawl groundfish survey for selected sampling station(s) on Sable Island Bank. Collaborate with DFO COOGER to characterize PW plume using chemical and microbial evaluation Delineate and characterize thermal plume from compression platform. Investigate possible attraction of fish thermal plume. 	 N/A DFO was unable to provide fish condition factor data (as a potential measure of fish health) since there were no random bottom trawl sampling stations in close proximity to any of the SOEP offshore platforms in 2007 (J. Emberley, DFO, pers.comm.). Continued discussions with COOGER on meaningful and achievable approach Attempted in field; unsuccessful due to equipment problems No ROV video surveys conducted in area of compression platform in 2008 	

1 - Scallops in cages only
 2 - North Triumph/Alma locations only
 3 - Thebaud only (caged)
 4 - Thebaud location only

VEC / EEM		2007	2008		
Component	Program	Observations	Program	Observations	
Fish and Fish Habitat	 Frequency: Opportunistic/ supplied UW videotape acquired by ROV camera Location: 26" export pipeline Parameter: Fish density near platform jacket and along randomly selected exposed sections of subsea pipeline to shore 	No ROV video collected at platform or along exposed sections of subsea pipeline to shore in 2007	 Frequency: annual Location: Thebaud Parameters: Analysis of videotape to identify distribution of associated marine life with focus on commercial and species- at-risk Frequency: Opportunistic/ supplied UW videotape acquired by ROV camera Location: 26" export pipeline Parameter: Fish density near platform jacket and along randomly selected 	No ROV video taken in 2008 of the cutting pile No change in pattern of colonization on exposed sections of pipeline to shore and Canso Strait from most recent previous survey. No species at risk or corals observed.	
Taint and Body Burden	Frequency: Annual mussels Locations: Jacket legs at Thebaud for mussels Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes	Aliphatic hydrocarbons in mussel tissues re-confirmed (as all previous years) to be biogenic in origin.	Frequency: Annual mussels Locations: Jacket legs at Thebaud for mussels Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes	Mussel samples could not be collected for logistical reasons (i.e. sea conditions, availability of fast rescue craft etc)	
Produced Water	Frequency: Semi-annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture and Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002).	Produced water at Thebaud, Venture, South Venture and Alma have elevated levels of some metals and each platform is relatively consistent in chemical signature from year to year. The total petroleum hydrocarbon concentrations in the various samples of produced water at Thebaud, Venture, South Venture and Alma were well below the OWTG limits of 30 mg/L (30 days) and 60 mg/L (24- hour) for oil in water. The results of the 96 hour LC ₅₀ and IC ₅₀ tests indicate that produced water from Thebaud, Venture, South Venture and Alma is toxic. It is surmised that the cause of the toxicity may be due to petroleum hydrocarbons. Given the hydrodynamic marine environment near Sable Island, the chemical constituents of produced water will likely be diluted to background levels within a few metres of the mouth of the discharge caisson.	Frequency: Semi-annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture and Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002).	Produced water at Thebaud, Venture and Alma are very high in some metals. Mercury level found at all but Alma platforms. Cadmium levels only metal to exceed CCME guidelines once at Thebaud. South Venture samples, when received by lab were too old to analyze for chemistry in 2008. The total petroleum hydrocarbon concentrations in the various samples of produced water at Thebaud, Venture and Alma were well below the OWTG limits of 30 mg/L (30 days) and 60 mg/L (24-hour) for oil in water. The results of the 96 hour LC ₅₀ and IC ₅₀ tests indicate that produced water from Thebaud, Venture, South Venture and Alma is toxic. (High salinity is considered a factor as in previous years.)	
Marine Mammals and Seabirds	Frequency: Monthly beached bird surveys Opportunistic transect surveys Location: Thebaud CWS seabird surveys from supply boats on transects between Thebaud platform and shorebase and reference areas. Oiled beach seabirds studies ongoing on Sable Island	 Based on the limited seasonal dataset collected in 2007, there is insufficient information to state conclusively whether the SOEP platforms attract seabirds based on analysis of transect data. Interpretation of seabird observation data in the vicinity of the SOEP platforms is complicated by the nearby presence of Sable Island, which supports colonies of many bird species. Several predominantly land-based birds likely died of trauma caused by collisions with superstructures on the Thebaud platform (October 10 2007) and on a DFO research vessel (October 7 2007). Of the three oil samples collected from Sable Island beach and analyzed, none contained light or mid-range distillate fuels or condensates that would be typical of oils produced on SOEP facilities. 	Frequency: Monthly beached bird surveys Opportunistic transect surveys Location: Thebaud CWS seabird surveys from supply boats on transects between Thebaud platform and shorebase and reference areas. Oiled beach seabirds studies ongoing on Sable Island	No avoidance of the supply vessel route or an attraction to the SOEP platform was evident. None of the 8 oiled bird samples collected on Sable Island contained petroleum hydrocarbons characteristic of those originating from SOEP facilities. Bilge and fuel oil ranges could have been from any vessel. Several predominantly land-based birds likely died of trauma caused by collisions with superstructures on the Thebaud platform during at least 3 separate incidents between October 7-14 2008.	

1 - Scallops in cages only
 2 - North Triumph/Alma locations only
 3 - Thebaud only (caged)
 4 - Thebaud location only

VEC / EEM		2007		2008		
Component	Program	Observations	Program	Observations		
Air Quality	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	 Flare plume was typically either clear or very light gray (#1 or #2 on NSDOEL Smoke Chart). There appeared to be a general improvement in flare plume colour. Awaiting data from EC for further analysis and reporting (M. Hingston, EC. pers.comm.) Preliminary analysis to date by EC indicates that all pollutant (i.e., SO2, NOx) concentrations measured on Sable Island are at much lower levels than in Halifax with the exception of PM2.5 which is believed to be high on Sable Island due to sea-salt aerosols 	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	 Flare plume was typically either clear or very light gray (#1 on NSDOEL Smoke Chart). There appeared to be a general improvement in flare plume colour. The monitoring program and current observations of various emissions producing activities on and around the island do not yet allow for confirmation as to whether the effects of offshore oil and gas activities can be measured on the island. H₂S and SO₂ peaks was hard to attribute to any particular source based upon current information. 		
				PM2.5 which is believed to be high on Sable Island due to sea-salt aerosols		

1 - Scallops in cages only
 2 - North Triumph/Alma locations only
 3 - Thebaud only (caged)
 4 - Thebaud location only

VEC / EEM			
Component	Program	Observations	Program
Sediment Toxicity	Discontinued since 2005 (see 2005 observations)	N/A	Discontinued since 2005 (see 2005 observations)
Sediment Chemistry	Discontinued since 2006 (see 2005 observations)	N/A	Discontinued since 2005 (see 2005 observations)
Benthic Habitat and Benthos	Frequency: annual Location: Thebaud Parameters: cutting pile estimation, Analysis of videotape to identify distribution of associated marine life with focus on commercial and species-at- risk	No cuttings evident since 2005. Using ROV imagery over the years has allowed general observations on community succession and qualitative comparisons across years showing that the platforms have attracted aggregations of a variety of mobile fish and invertebrate species.	Discontinued since 2009
Fish Health	Detailed fish health analysis discontinued since 2005 (see 2005 observations)	N/A	Detailed fish health analysis discontinued since 2005 (see 2005 observations)
Fish and Fish Habitat	 Frequency: Opportunistic/ supplied UW videotape acquired by ROV camera Location: 26" export pipeline Parameter: Fish density near platform jacket and along randomly selected exposed sections of subsea pipeline to shore 	No change in pattern of colonization on exposed sections of pipeline to shore and Canso Strait from most recent previous survey. No species at risk or corals observed. Using ROV imagery over the years has allowed general observations on community succession and qualitative comparisons across years showing that the subsea pipelines have attracted aggregations of a variety of mobile fish and invertebrate species and that the pipeline does not act as a barrier to movement for commercially important lobster and crab stocks.	Discontinued since 2010

1 - Scallops in cages only
 2 - North Triumph/Alma locations only
 3 - Thebaud only (caged)

4 - Thebaud location only

	Observations
	N/A
	N/A
	N/A
e	N/A
	N/A

VEC / EEM	2009		2010	
Component	Program	Observations	Program	Observations
Taint and Body Burden	Frequency: Annual mussels Locations: Jacket legs at Thebaud for mussels Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes	 Aliphatic hydrocarbons in mussel tissues re-confirmed (as all previous years) to be biogenic in origin. Higher concentration of biogenic hydrocarbons in filter feeding mussels indicates that the platforms may promote phytoplankton growth due to local nutrient enrichment. Mussels from Thebaud exhibit slightly higher levels of vanadium, strontium, and cadmium relative to control mussels 	Frequency: Annual mussels Locations: Jacket legs at Thebaud for mussels Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes	 Aliphatic hydrocarbons in mussel tissues re-confirmed (as all previous years) to be biogenic in origin. Higher concentration of biogenic hydrocarbons in filter feeding mussels indicates that the platforms may promote phytoplankton growth due to local nutrient enrichment. Mussels from Thebaud exhibit slightly higher levels of vanadium, strontium, and cadmium relative to control mussels
Produced Water	Frequency: semi annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture and Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002). Note: ExxonMobil's lab contractor changed in mid-2009, therefore two different commercial chemistry laboratories were used to analyze the produced water samples.	Produced water at Thebaud, Venture, Alma and South Venture have elevated levels of some metals. The highest metal values recorded at each platform were for boron, barium, iron, lithium, and strontium. Of these metals, the Theabud and venture platforms discharged the highest concentrations in comparison with the sample events at the other platforms. The total petroleum hydrocarbon concentrations in the various samples of produced water at Thebaud, Venture and Alma were well below the OWTG limits of 30 mg/L (30 days) and 60 mg/L (24-hour) for oil in water. The results of the 96 hour LC ₅₀ and IC ₅₀ tests indicate that produced water from Thebaud, Venture, South Venture and Alma is toxic. It is surmised that the cause of the toxicity may be due to petroleum hydrocarbons. The COOGER dispersion study concluded that "considering the present volume of produced water released, and the expected rates of dilution following discharge, based on microbiological analysis the toxicity of produced water from Venture/Thebaud offshore platforms is not considered an environmentally relevant factor of concern."	Frequency: semi annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture and Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002).	 Produced water at Thebaud, Venture, Alma and South Venture have elevated levels of some metals. The highest metal values recorded at each platform were for boron, barium, iron, manganese, and strontium. Of these metals, the Theabud and venture platforms discharged the highest concentrations in comparison with the sample events at the other platforms. The total petroleum hydrocarbon concentrations in the various samples of produced water at Thebaud, Venture and Alma were below the OWTG limits 60 mg/L (24-hour) for oil in water. The results of the 96 hour LC₅₀ and IC₅₀ tests indicate that produced water from Thebaud, Venture, South Venture and Alma is toxic. It is surmised that the cause of the toxicity may be due to petroleum hydrocarbons and possibly salinity. While petroleum hydrocarbon compounds such as PAHs and phenols and heavy metals such as lead are known to be toxic, they are likely to have contributed little to the overall toxicity of PW due to their low concentrations. Concentrations of other key non-organic PW constituents (i.e., barium, boron, iron, lead, zinc, strontium, and ammonia) have been relatively low in recent years. Two potentially toxic constituents, iron and ammonia, would more likely have contributed to the high toxicity observed (DFO COOGER, 2010).

1 - Scallops in cages only
 2 - North Triumph/Alma locations only
 3 - Thebaud only (caged)
 4 - Thebaud location only

VEC / EEM		2009	2010	
Component	Program	Observations	Program	Observations
Marine Mammals and Seabirds	Frequency: Monthly beached bird surveys Opportunistic transect surveys Location: Thebaud CWS seabird surveys from supply boats on transects between Thebaud platform and shorebase and reference areas. Oiled beach seabirds studies ongoing on Sable Island	 Species showing higher densities within the platform area and/or within 0-10km of platforms include terns, Heerring Gull, Black-legged Kittiwake, and Northern Gannet. Species showing lower densities within the platform area and/or within 0-10km of platforms include Dovekie, Northern Fulmar, Greater Shearwater, murres, and storm petrels. Effects of platform attraction or avoidance by seabirds are inconclusive due to potentially confounding effects of seabird habitat associations, which were not assessed in the 2009 analysis. Of the six oil samples collected from Sable Island beach and analyzed, none contained light or mid-range distillate fuels or condensates that would be typical of oils produced on SOEP facilities. The relatively steady decrease in percent oiling rate of seabird species from 2000 to 2009 suggests measures to reduce illegal oil discharges from vessels has resulted in a reduction in seabird oiling events. 	Frequency: Monthly beached bird surveys Opportunistic transect surveys Location: Thebaud CWS seabird surveys from supply boats on transects between Thebaud platform and shorebase and reference areas. Oiled beach seabirds studies ongoing on Sable Island	 Survey effort was increased during winter periods in 2010/2011. Overall seabird densities were equal between 2010/2011 and 2006-2009 periods (4.03 birds/km2) For areas within 25 km of platforms and comparison between 2010/2011 and 2006-2009 periods: Overall bird density showed no significant changes within seasons During winter periods Dovekie densities were higher and Northern Fulmar densities were lower in 2010/2011 During summer periods fulmar and storm-petrel densities were lower and tern densities were higher in 2010 During autumn periods, Great Shearwater densities were lower in 2010, but this likely reflects the timing of the survey which occurred after the peak fall migration period. Of the four oil samples collected from Sable Island beach and analyzed, none contained light or mid-range distillate fuels or condensates that would be typical of oils produced on SOEP facilities. The relatively steady decrease in percent oiling rate of seabird species (overall) from 2000 to 2010 suggests measures to reduce illegal oil discharges from vessels has resulted in a reduction in the seabird oiling events in the Sable Island area.
Air Quality	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	 Flare plume was typically either clear or very light gray (#1 or #2 on NSDOEL Smoke Chart). There appeared to be a general improvement in flare plume colour. The monitoring program and current observations of various emissions producing activities on and around the island do not yet allow for confirmation as to whether the effects of offshore oil and gas activities can be measured on the island. H₂S and SO₂ peaks was hard to attribute to any particular source based upon current information. PM2.5 which is believed to be high on Sable Island due to sea-salt aerosols The EC Sable Island Air Monitoring Program has produced some useful results in its first 6 years. Data from Sable Island is also being used to improve air quality modeling scenarios and to validate air quality models. 	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	The air quality monitoring program and past observations of various emission-producing activities on and around the island do not yet allow for confirmation as to whether the effects of offshore oil and gas activities can be measured on the island. EMC is participating in an ESRF funded study led by Environment Canada and Dalhousie University entitled "Data Display and Source Apportionment of Volatile Organic Compounds and Particulate Matter on Sable Island". This project will provide regulators, industry and researchers with necessary data to evaluate the impacts attributable to contaminant emissions to ambient air from petroleum related activities.

1 - Scallops in cages only
 2 - North Triumph/Alma locations only
 3 - Thebaud only (caged)
 4 - Thebaud location only

VEC / EEM	2011		2012	
Component	Program	Observations	Program	Program
Sediment Toxicity	Discontinued since 2005 (see 2005 N/A observations)		Discontinued since 2005 (see 2005 observations)	N/A
Sediment Chemistry	Discontinued since 2006 (see 2005 N/A observations)		Discontinued since 2006 (see 2005 observations)	N/A
Benthic Habitat and Benthos	Discontinued since 2010 (see 2009 observations) N/A		Discontinued since 2010 (see 2009 observations)	N/A
Fish Health	Detailed fish health analysis discontinued since 2005 (see 2005 observations)		Detailed fish health analysis discontinued since 2005 (see 2005 observations)	N/A
Fish and Fish Habitat	Discontinued since 2010 (see 2009 N/A observations)		Discontinued since 2010 (see 2009 observations)	N/A

1 - Scallops in cages only
 2 - North Triumph/Alma locations only
 3 - Thebaud only (caged)
 4 - Thebaud location only

VEC / EEM				
Component	Program	Observations	Program	
Taint and Body Burden	Frequency: Annual mussels Locations: Jacket legs at Thebaud for mussels Parameter: Aliphatic Hydrocarbons Moisture and Lipid Content Lipid Classes	 Ten years of monitoring the uptake of hydrocarbons in mussels has shown that the presence of aliphatic hydrocarbons is attributable primarily to biogenic hydrocarbons generated by phytoplankton. Higher concentration of biogenic hydrocarbons in filter feeding mussels indicates that the platforms promote phytoplankton growth. Polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons, and PCBs were below detectable levels (0.05 mg/kg, 15 mg/kg, and 0.05 µg/g respectively) in both the control and Thebaud mussels. With the exception of a slight increase in cadmium and strontium, and lower levels of some other metals (aluminum, arsenic, boron, copper, iron, manganese, mercury, selenium, and zinc), total metal concentrations in mussels from the Thebaud platform were similar to those measured in mussels from a reference location. Sensory evaluations conducted up until 2001 showed that any odour and taste difference was attributable to the condition of the Control mussel samples. 	Discontinued since 2012 (see 2011 observations). Will initiate mussel analyses in 2015.	N/A
Produced Water	Frequency: annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture and Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002 & 2010).	 TPH levels in produced water samples for toxicity analyses were below the OWTG (2010) limit (44 mg/L over 24-hrs). PW at all SOEP platform locations was interpreted as being 'toxic' based on 2011 bioassay results of EMC samples. Test results over this period clearly show that toxicity levels can vary widely over time and location in most part due to variation in reservoir characteristics. High salinity levels (up to 207 ppt) may also have contributed to the toxicity observed in samples although toxicity continued to occur in concentrations diluted to normal salinity values in bioassay tests. Further, toxicity occurring at the higher concentrations was likely due in many cases to a combination of both salinity and petroleum hydrocarbons. High toxicity of produced water samples from SOEP platforms is not considered an environmentally relevant factor of concern based on findings in a 2010 DFO COOGER research study. The COOGER study also concluded that potential contaminants in the relatively small PW discharges from SOEP platforms are diluted rapidly to no-effects concentration levels within metres of the mouth of the discharge caisson located below the sea surface. 	Frequency: annual for chemistry, annual for toxicity Location: Thebaud, Alma Parameter: trace metal composition and HC concentration, as required by OWTG (2002 & 2010).	 With one exwere below were below were below were below were below were pelow at all S 2012 bioassa Test results over time an High salinity observed in diluted to not the higher considered at 2010 DFO C potential considered at 2010 DFO C potential con platforms are the mouth of The potentiat PW from SC density of op such as con etc. (DFO, foreseeable for the second se

1 - Scallops in cages only

2 - North Triumph/Alma locations only

3 - Thebaud only (caged)

4 - Thebaud location only

Note: EEM program was re-evaluated in 2004; no field work undertaken for that year.

Program

exception, TPH levels in produced water samples for toxicity analyses w the OWTG (2010) limit (44 mg/L over 24-hrs).

SOEP platform locations was interpreted as being 'toxic' based on ssay results of EMC samples.

ts over this period clearly show that toxicity levels can vary widely and location in most part due to variation in reservoir characteristics.

nity levels (up to 147 ppt) may also have contributed to the toxicity in samples although toxicity continued to occur in concentrations normal salinity values in bioassay tests. Further, toxicity occurring at concentrations was likely due in many cases to a combination of both ad petroleum hydrocarbons.

icity of produced water samples from SOEP platforms is not d an environmentally relevant factor of concern based on findings in a O COOGER research study. The COOGER study also concluded that contaminants in the relatively small PW discharges from SOEP are diluted rapidly to no-effects concentration levels within metres of of the discharge caisson located below the sea surface.

ntial for cumulative environmental impacts related to the discharge of SOEP offshore platforms is also considered a low risk due to the low coperational platforms and the low intensity of other marine activities commercial fishing, marine transportation, military activity, tourism, D, 2012) on Sable Island Bank in the past, present, and in the le future.

VEC / EEM		2011		
Component	Program	Observations	Program	
Marine Mammals and Seabirds	Frequency: Monthly beached bird surveys Opportunistic transect surveys Location: Thebaud CWS seabird surveys from supply boats on transects between Thebaud platform and shorebase and reference areas. Oiled beach seabirds studies ongoing on Sable Island	 Overall seabird densities were higher in 2011 SOEP area compared to Scotian Shelf reference surveys 2006-2010, likely owing focus on winter surveys in 2011 when some seabird species are highly abundant. Dovekies were encountered most frequently during watches (12.3% of watches), accounted for 37% of all bird sightings, and had the highest average densities of 2.04 birds per km². Northern Fulmars densities in 2011 were approximately one third of the numbers that are typical in winter on the Scotian Shelf. During 2011, the corpses of 413 beached fulmars, shearwaters, gannets, Larusgulls, and alcids were collected on Sable Island. Fulmars and shearwaters accounted for 67.6% of total seabird corpses recovered, and alcids comprised 22.5%. The highest oiling rate for a seabird group, 11.5%, was observed in alcids. Six samples of oil were collected in 2011, and likely represented four separate discharge events. None of the six samples contained light or mid-range distillate fuels, or condensates that would be typical of oils produced on offshore gas facilities such as the SOEP processing platforms off Sable Island. 	Frequency: Monthly beached bird surveys Surveillance surveys by offshore operators Annual Radio-tracking of birds via receivers on supply boats Location: Thebaud 2 Supply vessels Monetary and logistical upport of Acadia/Encana instrument-based automated bird monitoring study, "Assessment of bird-human interactions at offshore installations" Oiled beach seabirds studies ongoing on Sable Island	 During 2012, larusgulls, an 57.6% of tota The highest of Seventeen sa separate discl Of the 17 san contained fue diesel is com offshore ener condensates t such as SOEI There were n Project durin Further to SO report detailin platforms pro facilities. Acadia/Encan
Air Quality	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	 Flare plume was typically either clear or very light gray (#1 or #2 on NSDOEL Smoke Chart). Based on results reported in 2009, the monitoring program and past observations of various emission producing activities on and around Sable Island do not yet allow for confirmation as to whether the effects of offshore oil and gas activities can be measured on the Island. EMC is participating in an ESRF funded study led by Environment Canada and Dalhousie University entitled "Data Display and Source Apportionment of Volatile Organic Compounds and Particulate Matter on Sable Island". This project will provide regulators, industry and researchers with necessary data to evaluate the impacts attributable to contaminant emissions to ambient air from petroleum related activities. Nova Scotia Environment has compiled audited air quality monitoring data for the last few years and provided this information to the offshore Operators. The Operators are currently discussing the future data analysis options with the Federal and Provincial environment agencies. Analysis of any air quality exceedences or anomalies measured on the island in recent years will be the focus of a future submission related to this report. 	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSEL Scale readings of flare colour	 Flare plume was t Smoke Chart). Kingfisher En and graphing spikes in air n direction/win a particular fa The data acqu completenesss of the paucity the data from It appears tha around Sable both 2010 an Elevated PM further invest need to be co

1 - Scallops in cages only

2 - North Triumph/Alma locations only

3 - Thebaud only (caged)

4 - Thebaud location only

Note: EEM program was re-evaluated in 2004; no field work undertaken for that year.

2012

Program

12, the corpses of 606 beached fulmars, shearwaters, gannets, and alcids were collected on Sable Island. Shearwaters accounted for otal seabird corpses recovered, and alcids comprised 26.2%. It oiling rate for a seabird group, 40.4%, was observed in alcids. samples of oil were collected in 2012, and likely represented five scharge events.

amples collected from the feathers of birds and the beach, 8 fuel oils in the mid-range distillate (or marine diesel) range. Marine ommonly used by most vessels, including vessels associated with the nergy industry. None of the samples contained light distillate fuels or as that would be typical of oils produced on offshore gas facilities DEP processing platforms offshore Sable Island.

e no spills reported from any of the vessels supporting the Sable ing 2012.

SOEP's Canadian Wildlife Permit LS 2560 requirements, an annual iling the numbers of birds salvaged, released and deceased on the provided monitoring data on those species observed on the offshore

cana bird monitoring study scheduled to complete in 2014. Is typically either clear or very light gray (#1 or #2 on NSDOEL

Environmental Health Consultants (KEHC) conducted data analysis ng of air quality and meteorological data from 2010/2011, identified ir monitoring data while cross referenced these to wind

vind speed. The objective was to determine potential correlation with r facility's operations, if required.

cquired by the monitoring station on Sable Island lacked sufficient ess to be considered adequate for a valid statistical analysis. Because ity of data it was difficult to conduct seasonal analysis or compare om both years.

that the only air pollutant that may be influenced by O&G production ble Island is NOx, by virtue of the 3rd highest NOx concentrations in and 2011.

M2.5 concentrations could be a consequence of sea salt spray and estigations of the PM2.5 chemistry and/or O&G operations would conducted to confirm this.

VEC / EEM		2013		2014
Component	Program	Observations	Program	Observations
Sediment Toxicity	Discontinued since 2005 (see 2005 observations)	N/A	Discontinued since 2005 (see 2005 observations)	N/A
Sediment Chemistry	Discontinued since 2006 (see 2005 observations)	N/A	Discontinued since 2006 (see 2005 observations)	N/A
Benthic Habitat and Benthos	Discontinued since 2010 (see 2009 observations)	N/A	Discontinued since 2010 (see 2009 observations)	N/A
Fish Health	Detailed fish health analysis discontinued since 2005 (see 2005 observations)	N/A	Detailed fish health analysis discontinued since 2005 (see 2005 observations)	N/A
Fish and Fish Habitat	Discontinued since 2010 (see 2009 observations)	N/A	Discontinued since 2010 (see 2009 observations)	N/A
Taint and Body Burden	Discontinued since 2012 (see 2011 observations). Will initiate mussel analyses in 2015.	N/A	Discontinued since 2012 (see 2011 observations). Initiated mussel analyses in 2015.	N/A

1 - Scallops in cages only
 2 - North Triumph/Alma locations only
 3 - Thebaud only (caged)
 4 - Thebaud location only

VEC / EEM	2013		2014	
Component	Program	Observations	Program	Observations
Produced Water	Frequency: annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002 & 2010).	below Offshore Waste Treatment Guidelines (OWTG) (2010) oil-in-water concentration limits at three SOEP platforms – Thebaud, Alma and South Venture. Venture was shut-in during 2013.	Frequency: annual for chemistry, annual for toxicity Location: Thebaud, Alma, South Venture Parameter: trace metal composition and HC concentration, as required by OWTG (2002 & 2010).	below Offshore Waste Treatment Guidelines (OWTG) (2010) oil-in-water concentration limits at all SOEP platforms.

1 - Scallops in cages only
 2 - North Triumph/Alma locations only
 3 - Thebaud only (caged)
 4 - Thebaud location only

VEC / EEM		2013		2014	
Component	Program	Observations	Program	Observations	
Marine Mammals and Seabirds	 Frequency: Monthly beached bird surveys Surveillance surveys by offshore operators Annual Radio-tracking of birds via receivers on supply boats In 2013: Radar monitoring of bird interactions near the flare @ the Pt. Tupper Fractionation plant Location: Thebaud 2 Supply vessels Parameter: Logistical support of Acadia/Encana instrument-based automated bird monitoring study, "Assessment of bird interactions with offshore infrastructure associated with the oil and gas industry of Nova Scotia, Canada" Oiled beach seabirds studies ongoing on Sable Island 	 During 2013, the corpses and fragments of 461 beached seabird corpses were collected on Sable Island. Fulmars and shearwaters accounted for 25.8% of total corpses recovered, and alcids comprised 55.5%. The overall oiling rate for the 461 birds was <0.5% — a single bird (one of 16 Northern Fulmar corpses). The 2013 oiling rate for alcids (all species combined) was markedly lower than that observed in 2012 (i.e. 0% compared with 40.4%). This is the first time in 21 years (since beginning the beached seabird survey program in 1993) that the annual oiling rate for alcids was 0%. There were no spills reported from any of the vessels supporting the Sable Project during 2013. EMC supported the Acadia/Encana instrument-based automated bird monitoring study by providing platforms (2 supply vessels) on which to install radio tracking receivers, and participation of field staff (on supply vessels and platforms) in the monitoring of physically tagged birds in the offshore areas. EMC also provided an on-land access point to monitor the flare from its fractionation plant facility in Point Tupper, NS (Acadia/Encana Study). Following 8 monitoring evenings, during different seasons and weather conditions, radar images to be analyzed for bird interactions.(results pending as at 03/2015) Further to SOEP's Canadian Wildlife Permit LS 2560 requirements, an annual report detailing the numbers of birds salvaged, released and deceased on the platforms provided monitoring data on those species observed on the offshore facilities. Acadia/Encana bird monitoring study to be completed in 2014. 	Frequency: Monthly beached bird surveys, as able. Surveillance surveys by offshore operators Location: Sable Island Offshore Platforms 2 Supply vessels Beached (oiled) seabirds studies ongoing on Sable Island	 The overall oiling rate for all species combined (based on complete corpses, Codes 0 to 3) was <3.2%. A total of six oiled corpses were recovered in 2014, and all were alcids. Alcids accounted for 54% of total corpses collected and the oiling rate for this species was 7.9% (compared to 0% in 2013). The collection of the six oiled bird corpses occurred during the first week of February, and samples of oiled feathers were collected from five of the corpses. The samples were determined to be moderately weathered Heavy Fuel Oil most typical of residuals or sludge from fuel tanks. EMC will continue to report the numbers of birds and species physically impacted by the presence of the offshore facilities, by documenting those salvaged, released and deceased. The number of birds found in 2014 was up from previous years (71) found in 2011 and (30) found in 2010. It should be noted that 16 of the 71 birds observed in 2014 were released and did not perish offshore. 	

- 1 Scallops in cages only
 2 North Triumph/Alma locations only
 3 Thebaud only (caged)
 4 Thebaud location only

VEC / EEM	2013		2014	
Component	Program	Observations	Program	Observations
Air Quality	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSDOEL Scale readings of flare colour	 Flare plume was typically clear with very few occasions observing very light gray (#1 or #2 on NSDOEL Smoke Chart). Kingfisher Environmental Health Consultants (KEHC) conducted data analysis and graphing of air quality and meteorological data from 2013, identified spikes in air monitoring data while cross referenced these to wind direction/wind speed. The objective was to determine potential correlation with a particular facility's operations, if required. Data completeness was excellent for PM2.5 (87%) and O3 (93%) during 2012. The data completeness for NOx (73%), NO2 (72%) and NO (74%) were below the NAPS accepted data completeness of 75%, but are close enough to be acceptable for statistical analysis. Air monitoring data acquired in the 2012 year indicates that there were four events where the NOX air emissions 'spike' threshold (1-hr period) was exceeded. Investigation of these spikes revealed that one out of the four 'spikes' was possibly due to O&G operations around Sable Island. The two highest daily average PM2.5 concentrations (September 22nd and December 22nd) were aligned with airflow from the south, which aligns with the North Triumph O&G production facility. It was also seen that PM2.5 in 2012 showed a spread directional dependence from the WSW, SW, SE, ESE and E for PM2.5 concentrations above 20 µg/m3, which aligns with multiple platforms. Elevated PM2.5 concentrations could be a consequence of sea salt spray and further investigations of the PM2.5 chemistry and/or O&G operations would need to be conducted to confirm this. It is unlikely that the Sable O&G production had any influence on the three elevated daily average O3 concentrations seen in 2012. 	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOX, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSDOEL Scale readings of flare colour	 Flare plume was typically clear with very few occasions observing very light gray (#1 or #2 on NSDOEL Smoke Chart). The most important feature of the air quality data acquired on Sable Island for 2014 is that there was one operational threshold breach for H2S (3.4 ppbv, 1-hr period; threshold at 3.11 ppb) on August 7. This threshold breach was likely a result of a short-term acid gas flaring issue on the Deep Panuke natural gas production facility (Encana communication). There were no breaches of the National Air Quality Standards, Canada Ambient Air Quality Objectives (CAAQO) or Canada Wide Standard for any of the air pollution metrics contained in this report. Wind rose analysis showed that the average wind vector for 2014 was 252° which is consistent with the known prevailing winds from the SW advecting over the Scotian shelf. Spikes in NOx, PM2.5 and O3 in 2014 originated from known source regions in the Ohio valley, Ontario, Quebec, NE US and Nova Scotia prior to arriving on Sable Island. There is intriguing evidence that the spikes in NMHC on May 26, June 9 and June 23 through 28 are associated with marine biogenic emissions and neither continental outflow or O&G production operations.

- 1 Scallops in cages only
 2 North Triumph/Alma locations only
 3 Thebaud only (caged)
 4 Thebaud location only

VEC / EEM Component	2015		
	Program	Observations	
Sediment Toxicity	Discontinued since 2005 (see 2005 observations)	N/A	
Sediment Chemistry	Discontinued since 2006 (see 2005 observations)	N/A	
Benthic Habitat and Benthos	Discontinued since 2010 (see 2009 observations)	N/A	
Fish Health	Detailed fish health analysis discontinued since 2005 (see 2005 observations)	N/A	
Fish and Fish Habitat	Discontinued since 2010 (see 2009 observations)	N/A	

1 - Scallops in cages only
 2 - North Triumph/Alma locations only
 3 - Thebaud only (caged)
 4 - Thebaud location only

2015 VEC / EEM Component Program **Observations** Ten years of monitoring the uptake of hydrocarbons in mussels has shown that the Frequency: Annual mussels Locations: Jacket legs at Thebaud for presence of aliphatic hydrocarbons is attributable primarily to biogenic hydrocarbons mussels generated by phytoplankton. Higher concentration of biogenic hydrocarbons in filter feeding mussels indicates that **Parameter:** Aliphatic Hydrocarbons the platforms promote phytoplankton growth. **Taint and Body** Moisture and Lipid Content Polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons, and PCBs were Lipid Classes below detectable levels (0.05 mg/kg, 15 mg/kg, and 0.05 μ g/g respectively) in both the Burden control and Thebaud mussels. Total metal concentrations in mussels from the Thebaud platform were generally similar to those measured in mussels from a reference location (control mussels) in 2015 Total Petroleum Hydrocarbon daily average values were well below Offshore Waste **Frequency:** annual for chemistry, annual for toxicity Treatment Guidelines (OWTG) (2010) oil-in-water concentration limits at four SOEP Location: Thebaud, Alma, South platforms - Thebaud, Alma and South Venture and Venture. Venture. Venture Annual PW characterization samples taken at Thebaud, Alma and South Venture and Parameter: trace metal composition and Venture platforms in 2015 are considered 'toxic' based on results of a variety of toxicity HC concentration, as required by OWTG bioassays. (2002 & 2010). Test results since 2005 show that chemical and toxicity levels vary widely over time and location in large part due to varying reservoir characteristics. Besides differences in reservoir characteristics, factors which contribute to variation in **Produced Water** TPH concentrations in PW samples include time of sampling, efficiency of the onboard treatment system, and operational upsets. • Sand production in the reservoir has occasionally shown to influence the effectiveness of the treatment systems. Toxicity of produced water samples from SOEP platforms is not considered an environmentally relevant factor of concern based on findings in a DFO COOGER research study (2010) which found that potential contaminants in the relatively small PW discharges from SOEP platforms are diluted rapidly to no-effects concentration levels within tens of metres of the subsurface discharge caisson. The overall oiling rate for all species combined (based on complete corpses, Codes 0 to Frequency: Monthly beached bird surveys, as able. 3) was 0.5%. Surveillance surveys by offshore • One oiled corpse were recovered in 2015, it was an alcid. Alcids accounted for 58.4% of total corpses collected and the oiling rate for this species operators Location: was 1.7% (compared to 7.9% in 2014). The single oiled bird corpse occurred during April, and a sample of oiled feathers was Sable Island collected. Analysis of the oil determined it to be a weathered mixture of Heavy Fuel Oil Offshore Platforms and Lube Oil, and very typical of a long haul commercial vessel running on Heavy Fuel 2 Supply vessels Oil (e.g. container vessel, bulk carrier, etc.) having discharged engine room bilge oil **Marine Mammals** and Seabirds Beached (oiled) seabirds studies ongoing either directly or after storage in a slop tank on Sable Island EMC will continue to report the numbers of birds and species physically impacted by the presence of the offshore facilities, by documenting those salvaged, released and deceased. The number of birds found on Sable Assets in 2015 was down from previous years (17) found in 2015, (71) found in 2014, (10) found in 2013, (7) found in 2012, and (52) found in 2011.

Table 1-4 History of SOEP EEM Program 1998-2015

1 - Scallops in cages only

2 - North Triumph/Alma locations only

3 - Thebaud only (caged)

4 - Thebaud location only

•

VEC / EEM	2015		
Component	Program	Observations	
Air Quality	Frequency: Real time continuous Twice daily flare plume monitoring by EM personnel Location: Sable Island & Thebaud Platform Parameter: NOx, SO ₂ /H ₂ S, O ₃ , PM _{2.5} NSDOEL Scale readings of flare colour	 Flare plume was typically clear with very few occasions observing very light gray (#1 or #2 on NSDOEL Smoke Chart). Kingfisher Environmental Health Consultants (KEHC) conducted data analysis and graphing of air quality and meteorological data from 2015, identified spikes in air monitoring data while cross referenced these to wind direction/wind speed. The objective was to determine potential correlation with a particular facility's operations, if required. Due to NSE ceasing air quality monitoring management of the NOx, H2S, SO2, O3, NOx and BAM PM2.5 equipment, there was no available data for these air emission metrics for the whole of 2015. Supplemental PM2.5 data was available from October through to the end of 2015 from a TSI DRX instrument. Ultrafine and coarse particle number counts were also measured from October through to the end of 2015. The most important feature of the 2015 air emissions report is that the spikes in PM mass and particle number concentrations were associated with LRT continental outflow, and not from O&G operations or associated with ocean biogenic fluxes. The mean PM2.5 for the 3-months of 2015 was similar in concentration to previous air emissions reports. 	

1 - Scallops in cages only
 2 - North Triumph/Alma locations only
 3 - Thebaud only (caged)
 4 - Thebaud location only

Appendix for Section 2

Produced Water Sampling and Analysis Procedures - SGS Laboratories

Collection of Produced Water:

The samples that are collected directly from the discharge pipe should be sampled into the bottles supplied by the laboratory to ensure the integrity of the samples.

Produced Water / Filtration of Produced Water / Sub-Sampling Procedures / Salinity, pH, Oxygen

N/A to laboratory

Nutrients

The nutrient samples that are taken for ExxonMobil are to be analysed for Ammonia and

TKN – 60 ml amber bottle filled approximately 80%.

Inorganics (SPM)

N/A to laboratory

Metals

The following are the bottles needed for metals analysis:

1X250 ml plastic bottle filled approximately 80%.

Organics

The bottles required for BTEX/TPH are 2x40ml glass amber vials (vials must be filled to the top and contain no headspace) and 1X1L amber glass bottle (filled approximately 90%).

Methods and method summaries of analysis are available upon request.

Quality Control

Blank samples can be supplied by the client to run as samples within the laboratory. They will be treated the same as all other samples.

Field and Trip blanks can be supplied to the client upon request and can be run as actual samples.

SGS follows a very stringent QA/QC Program with the analysis of duplicates, method blanks, surrogates, spikes and certified reference materials where applicable.

General Info on Sampling / Preparing to go to the field / Locating Site Stations / Field Notes / Observations N/A to laboratory

Sampling Equipment Containers

The following is what the Produced Water for ExxonMobil has been analysed for in the past as well as bottles required:

250 ml metals 60 ml TKN 2X40 ml vials TPH/BTEX 1X1L amber glass 500 ml plastic

Ammonia+Ammonium (N) (mg/L), T. Kjeldahl Nitrogen (as N mg/L), Mercury (mg/L),
Aluminum (mg/L), Arsenic (mg/L), Barium (mg/L), Boron (mg/L), Cadmium (mg/L),
Cobalt (mg/L), Chromium (mg/L), Copper (mg/L), Iron (mg/L), Magnesium (mg/L),
Manganese (mg/L), Molybdenum (mg/L), Nickel (mg/L), Phosphorus (mg/L),
Lead (mg/L), Antimony (mg/L), Selenium (mg/L), Tin (mg/L), Strontium (mg/L),
Sulphur (mg/L), Thorium (mg/L), Uranium (mg/L), Vanadium (mg/L), Zinc (mg/L),
F1 (C6-C10)-water (ug/L), F1 (C10-C16)-water (ug/L), F1 (C16-C34)-water (ug/L),
F1 (C34-C50)-water (ug/L), pH

Sampling Collection Methods

N/A to laboratory

Preservation / Holding Times

CHC will not allow any preservatives on flights offshore. Preservatives will be added upon receipt at the laboratory, if necessary.

Analytical Methods

BTEX/TPH – CCME Metals – ICP-MS Mercury – Cold Vapour Atomic Absorption Ammonia – SM4500-N C TKN – SM4500-NH3 G

Other Considerations N/A to laboratory

REPORT OF ANALYSIS - PRODUCED WATER

CLIENT: CLIENT REFERENCE NO.:	ExxonMobil Canada, 500 SO#4502419826 WO#0		hway 316, Go	oldboro, NS B0H 1L0
SGS JOB/SAMPLE NO .:	EMC-2477	DATE	SAMPLED:	November 28, 2016
SAMPLE DESCRIPTION:	Produced Water	TIME S	AMPLED:	1300
SAMPLE SOURCE:	Thebaud Platform	SAMPL	ED BY:	B. Huber
METAL PREP: (Total or Dissolved): Total		DATE	RECEIVED:	November 30, 2016
		DATE	REPORTED:	December 20, 2016
TEST	METHOD	Detection Limit (mg/L)	RESULT	<u>SMC</u>
Ammonia+Ammonium (N) (r T. Kjeldahl Nitrogen (as N mg/L) Mercury (mg/L) Aluminum (mg/L) Antimony (mg/L) Barium (mg/L) Boron (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Copper (mg/L) Iron (mg/L) Magnesium (mg/L) Magnesium (mg/L) Magnesium (mg/L) Nickel (mg/L) Phosphorus (mg/L) Lead (mg/L) Strontium (mg/L) Strontium (mg/L) Sulphur (mg/L) Uranium (mg/L) Uranium (mg/L)	SM4500-NORG D SM3112 B SM3125	0.1 0.4 0.000026 0.25 0.1 0.25 0.25 0.00085 0.05 0.05 0.05 2.50 5.0 0.1 0.1 0.1 0.1 0.25 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.25 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.1 0.1 0.1 0.05 0.05 0.1 0.1 0.1 0.05 0.	$\begin{array}{c} 19.4\\ 9.0\\ 0.000036\\ <0.25\\ <0.1\\ <0.1\\ 2.45\\ 0.251\\ <0.0085\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <5.0\\ <0.1\\ <0.1\\ <0.1\\ <0.02\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.05\\ <0.01\\ <0.001\\ <0.001\\ <0.001\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.01\\ <0.005\\ <0.1\\ <0.001\\ <0.001\\ <0.01\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.005\\ <0.1\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ <0.001\\ \\ \\0.001\\ <0.001\\ \\0.001\\ \\0.001\\ \\0.001\\ \\0.001\\$	20112272 20112278 20112276 20112272
Zinc (mg/L) pH (no unit)	SM3125 SM4500 H+B	0.25	<0.25 6.2	20112272 5106294

Notes: Tested by AGAT Laboratories, Dartmouth, NS

REMARKS:

This reports is issued by the Company under its General Conditions for inspection and Testing Services (copy available upon request). The issuance of this report does not exonerate buyers or selfers from exercising all their rights and discharging all their isabilities under the Contract of Sele. Stiputations to the contrary are not binding on the Company. The Company's responsibility under this report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be retained by the Company for more than theme monits.

Approved by Supervisor:

R' O'Donnell

This test report shall not be reproduced except in full without written approval of \$G\$ Canada Inc.

SGS Canada Inc. Oli, Gas & Chemicals Services 4092 Port Malcolm Road Point Tupper NS B9A 1Z5 t (902) 625-3233 t (902) 625-0264 www.sgs.ca +

REPORT OF ANALYSIS - PRODUCED WATER

CLIENT: CLIENT REFERENCE NO.:	ExxonMobil Canada, 500 SO#4502419826 WO#0		nway 316, Go	oldboro, NS B0H 1L0
SGS JOB/SAMPLE NO .:	EMC-2483	DATES	SAMPLED:	December 7, 2016
SAMPLE DESCRIPTION:	Produced Water	TIME S	AMPLED:	1130
SAMPLE SOURCE:	Venture Platform	SAMPL	ED BY:	B. LeBlanc
METAL PREP: (Total or Dissolved): Total		DATE	RECEIVED:	December 8, 2016
				December 20, 2016
TEST	METHOD	Detection Limit (mg/L)	RESULT	SMC
Ammonia+Ammonium (N) (i T. Kjeldahl Nitrogen (as N mg/L) Mercury (mg/L) Aluminum (mg/L) Arsenic (mg/L) Barium (mg/L) Boron (mg/L) Cadmium (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Copper (mg/L) Iron (mg/L) Magaesium (mg/L) Magaesium (mg/L) Nickel (mg/L) Phosphorus (mg/L) Selenium (mg/L) Strontium (mg/L) Strontium (mg/L) Uranium (mg/L) Uranium (mg/L) Uranium (mg/L)		5.0 20 0.00130 0.25 0.100 0.25 0.25 0.00085 0.050 0.050 0.050 2.50 5.0 0.1 0.1 0.1 0.25 0.05 0.05 0.1 0.25 0.05 0.1 0.25 0.05 0.1	380 205 0.00130 27.0 0.100 0.100 821 15.3 0.003111 0.05 0.799 0.068 223 1500 45.2 0.1 0.777 0.450 0.105 0.1 2080 <0.05 <0.1 2080 <0.05 <0.1	20112272 20112278 20112276 20112272
Zinc (mg/L) pH (no unit)	SM3125 SM4500 H+B	0.25	3.11 5.9	20112272 5106294

Notes: Tested by AGAT Laboratories, Dartmouth, NS

REMARKS:

IREMARKS: This report is issued by the Company under its General Conditions for Inspection and Testing Services (copy available upon request). The issuance of this report does not exonerate buyers or selfers from exercising all their rights and discharging all their labilities under the Contract of Sale. Stiputations to the contrary are not binding on the Company. The Company's responsibility under this report is limited to proven negligence and will in no case be more than ten times the amount of the free or commission. Except by special arrangement, samples, if drawn, will not be related by the Company for more than there months.

Approved by Supervisor:

R' O'Donnell

This test report shall not be reproduced except in full without written approval of SGS Canada Inc.

SGS Canada Inc. OII, Gas & Chemicals Services 4092 Port Malcolm Road Point Tupper NS B9A 1Z5 t (902) 625-3233 t (902) 625-0264 www.sgs.ca

REPORT OF ANALYSIS - PRODUCED WATER

CLIENT: CLIENT REFERENCE NO.:	ExxonMobil Canada, 500 SO#4502419826 WO#0		hway 316, Go	oldboro, NS B0H 1L0
SGS JOB/SAMPLE NO.: SAMPLE DESCRIPTION: SAMPLE SOURCE: METAL PREP: (Total or Discolved): Tota	EMC-2490 Produced Water Alma Platform al	TIME S SAMPL DATE I	AMPLED: .ED BY: RECEIVED:	December 11, 2016 1200 EMCE December 11, 2016 January 6, 2017
TEST	METHOD	Detection Limit (mg/L)	RESULT	SMC
Ammonia+Ammonium (N) (T. Kjeldahl Nitrogen (as N mg/L) Aluminum (mg/L) Antimony (mg/L) Barium (mg/L) Barium (mg/L) Cadmium (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Cobalt (mg/L) Noixel (mg/L) Noixel (mg/L) Selenium (mg/L) Strontium (mg/L) Strontium (mg/L) Thorium (mg/L) Uranium (mg/L) Uranium (mg/L) Vanadium (mg/L) Zinc (mg/L) Ph (no unit)		0.1 0.4 0.00003 0.25 0.100 0.25 0.00085 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.05 0.05 0.05 0.05 0.05 0.1 0.25 0.05 0.1 0.25 0.05 0.1 0.1 0.25 0.05 0.1 0.25 0.05 0.1 0.1 0.1 0.1 0.25 0.05 0.05 0.1 0.1 0.25 0.05 0.05 0.1 0.1 0.25 0.05 0.05 0.1 0.1 0.25 0.05 0.05 0.05 0.1 0.1 0.25 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.25 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.25 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.05 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.025 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.1 0.05 0.01 0.05 0.1 0.25 0.05 0.01 0.25 0.01 0.25 0.01 0.25 0.01 0.25 0.01 0.25 0.01 0.25 0.01 0.25 0.1 0.25 0.01 0.25 0.11 0.25 0.01 0.25 0.11 0.25 0.01 0.25 0.11 0.25 0.11 0.25 0.01 0.25 0.11 0.11 0.25 0.11 0.25 0.11 0.11 0.25 0.11 0.11 0.25 0.11	39.1 21 <0.00003 <0.250 <0.100 <0.100 10.9 3.49 <0.00850 <0.05 <0.05 <11.9 36 0.207 <0.1 <1.00 <0.025 <0.05 <0.1 <1.00 <0.025 <0.05 <0.1 <1.00 <0.05 <0.05 <0.1 <1.00 <0.05 <0.05 <0.05 <0.1 <0.1 <1.00 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.1 <0.1 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.01 <0.05 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.11 <0.05 <0.11 <0.05 <0.11 <0.05 <0.11 <0.11 <0.005 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11	20112272 20112278 20112272

Notes: Tested by AGAT Laboratories, Dartmouth, NS

REMARKS: This report is issued by the Company under its General Conditions for Inspection and Testing Services (copy available upon request). The issuance of this report does not excnerate buyers or sellers from exercising all their rights and discharging all their liabilities under the Contract of Sale. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this report is limited to proven negligence and will in no case be more than ten times the amount of the fees or commission. Except by special arrangement, samples, if drawn, will not be relained by the Company for more than three months.

Approved by Supervisor:

R' O'Donnell

This test report shall not be reproduced except in full without written approval of SGS Canada Inc.

SGS Canada Inc. Oli, Gas & Chemicals Services 4092 Port Malcolm Road Point Tupper NS B9A 125 t (902) 625-3233 t (902) 625-0264 www.sgs.ca

REPORT OF ANALYSIS - PRODUCED WATER

CLIENT: CLIENT REFERENCE NO.:	ExxonMobil Canada, 500 SO#4502419826 WO#00		way 316, Go	oldboro, NS B0H 1L0
SGS JOB/SAMPLE NO .:	EMC-2484	DATES	SAMPLED:	December 7, 2016
SAMPLE DESCRIPTION:	Produced Water	TIME S	AMPLED:	1300
SAMPLE SOURCE:	South Venture Platform	uth Venture Platform SAMPLED BY:		
METAL PREP: (Total or Discolved): Total		DATE	RECEIVED:	December 8, 2016
				December 20, 2016
TEST	METHOD	Detection Limit (mg/L)	RESULT	SMC
Ammonia+Ammonium (N) (r T. Kjeldahl Nitrogen (as N mg/L) Mercury (mg/L) Aluminum (mg/L) Antimony (mg/L) Barium (mg/L) Boron (mg/L) Cadmium (mg/L) Cobalt (mg/L) Cobalt (mg/L) Copper (mg/L) Iron (mg/L) Magnesium (mg/L) Malyadenum (mg/L) Nickel (mg/L) Selenium (mg/L) Strontium (mg/L) Sulphur (mg/L) Thorium (mg/L) Uranium (mg/L)	mg/L) SM4500-NH3 G SM4500-NORG D SM3125 SM31	5.0 20.0 0.00130 0.25 0.100 0.25 0.25 0.050 0.050 0.050 2.50 5.0 0.1 0.1 0.1 0.1 0.1 0.25 0.056 0.055 0.055 0.055 0.055 0.05 0	70.1 34.9 Q.00130 0.25 0.100 0.100 3.81 0.468 0.0085 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.11 0.100 0.25 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.11 0.008 0.05	20112272 20112278 20112276 20112272
Vanadium (mg/L) Zinc (mg/L) pH (no unit)	SM3125 SM3125 SM3125 SM4500 H+B	0.1	<0.000 <0.1 <0.250 7.1	20112272 20112272 5106294

Notes: Tested by AGAT Laboratories, Dartmouth, NS

REMARKS:

IREMARKS: This report is issued by the Company under its General Conditions for Inspection and Testing Services (copy available upon request). The issuance of this report does not exonerate buyens or selfers from exercising all their rights and discharging all their liabilities under the Contract of Sale. Stipulations to the contrary are not binding on the Company. The Company's responsibility under this report is limited to proven negligence and will in no case be more than ten times the amount of the free or commission. Except by special arrangement, samples, if drawn, will not be relatived by the Company from the time times the amount of the free or commission. Except by special arrangement, samples, if drawn, will not be relatived by the Company for more than then times the amount of the free.

Approved by Supervisor:

R' O'Donnell

This test report shall not be reproduced except in full without written approval of \$G\$ Canada Inc.

SGS Canada Inc. OII, Gas & Chemicals Services 4092 Port Malcolm Road Point Tupper NS B9A 1Z5 t (902) 625-3233 t (902) 625-0264 www.sgs.ca

FISH TOXICITY REPORT (LC50)

Client:	Exxon Mo									Testing Service Ltd.
Address:	Founders S					Locati				outh Rawdon, Nova Sc
	Halifax, N								0N 1Z0	
Contact:	Megan Tut	ttle				Ph : 902	757-0232	E Fax: 90	2 757-2839	office@harrisindustrial.info
				SA	MPLE D	ATA		Lab ID.	# 1	6-600
Sample/L	ocation:	Crudesorb O								
Sampling	Method:	Grab	·	Sample Ho	omogeniz	ed: No		Sampler	: В	B. Huder
Date/Time	e Collected:	Nov. 28 201	5 1300 Hi	S				Receive	d: N	lov. 28 2016
Date/Time	e Started:	Nov. 29 201	5 1300 Hi	S				Comple	ted: D	Dec. 03 2016 1300 Hrs
Sample D	escription:	Clear, colour	less liquid	with a stro	ong chem	ical odour	•	_		
ТЕ	ST INFORM	IATION				PRE-	TEST P	ARAME	TERS	
Reference I	Method:		Pre-te	st Temper	ature: 16.	<u>0</u> °C		Man	datory 30) minute pre-aeration:
EPS 1/RM/	10 July 1990		Pre-te	st D.O.: 7	7. <u>5</u> mg/L	,				l_ml/min/L
with 2000 A	Amendments		Pre-te	st pH: 6	<u>.0</u> Ādj	usted: <u>N</u>	<u>0</u>	Time	e: <u>1230</u> 1	hrs D.O.: <u>8.3</u> mg/L
Гуре: LC ₅	Tox 9B		Condu	uctivity of	Sample:	<u>1343</u> µS/	cm	Cont	tinued: _ :	min. @ _ hrs
Test Organ	ism: Threesp	oine Sticklebac	k Salini	ty of Sam	ple: <u>0.67*</u>	ppt		Cont	t'd throug	shout test by airstone
			Salini	ty of Cont	rol: <u>30.3</u>	ppt				
				TEST	COND	TIONS				
FSS Batch	#: <u>53***</u>		Loadi	ng Densit	y: <u>0.59**</u>	g/L		Photop	period: 1	6L/8D
Mortality: ().6% over 7 d	lays prior to tes	st Mean	fork lengt	th: <u>39</u> mm	1 ± 3.7 m	m SD	Lux:	100 - 500	
-				e: <u>34</u> mm				Static	Test	
Fest Volun	ne: <u>10</u> L De	pth: <u>17.7</u> cm						Durati	on: 96 ho	ours
Replicates:	<u>No</u>		Mean	wet weigl	nt: <u>0.59</u> g	± <u>0.23</u>	g SD	Contro	ol/Dilutio	n Water: Seawater
Number of	fish per vesse	el: <u>10</u>	Range	e: <u>0.33</u> g -	<u>0.97</u> g			Tempe	erature: 1	5±1°C
		TEST PAR	AMETER	S					RESU	ILTS
	-	<u>(0 Hrs)</u>			nal (96 H					
Conc	1	.O pH	Sal.	Temp	D.O	pН		mber	Numbe	
%	°C mg	g/L	ppt	°C	mg/L		D	lead	Stresse	d
100	16.0 8	.3 6.1	0.67	15.5	8.6	5.4	1	0/10	0/10	All dead @ 19 hrs.

100	16.0	8.3	6.1	0.67	15.5	8.6	5.4	10/10	0/10	All dead @ 19 hrs.
50	16.0	8.4	6.6	15.2	15.5	7.5	6.6	10/10	0/10	All dead @ 19 hrs.
25	16.0	8.2	6.8	22.3	15.5	8.6	7.1	10/10	0/10	All dead @ 19 hrs.
12.5	15.5	8.3	7.2	26.0	15.5	7.5	7.5	0/10	0/10	
6.25	15.5	8.3	7.6	27.8	15.5	8.4	7.7	0/10	0/10	
Ctl.	15.5	8.1	7.7	30.3	15.5	8.5	7.7	0/10	0/10	

96 HOUR LC50 RESULTS

LC50 Value: 95% Confidence Limits: Statistical Method: **17.7%** 12.5 – 25.0%

Binomial - CETIS

REFERENCE TOXICANT DATA:Batch: 53***Reference Substance: PhenolTest Date: Nov. 28 – Dec. 02 201696 Hour LC₅₀ for Phenol: 14.4 mg/L95% C.L.: 11.5 – 17.9mg/LHistorical Phenol Mean: 16.4 mg/LWarning Limits ± 2 SD: 12.6 – 21.4 mg/L

Comments: *Salinity of sample <10ppt. **Loading density exceeds 0.5 g/L due to size of fish and volume of effluent available. *** Correction of typographical error. Batch 54 corrected to Batch 53.

Analyst(s): A. Huybers and G. Harris

Han Verified by: C. Harris

Date Revised: Dec. 12 2016

FISH TOXICITY REPORT (LC50)

Client:	Exxon	Mobil C	Canada				Test Fa	cility: Harris	Industrial Te	sting Service Ltd.	
Address:		ers Squar								h Rawdon, Nova Scotia	
		k, N.S.						Canada	B0N 1Z0		
Contact:	Megar	n Tuttle					Ph : 902	757-0232 Fax: 9	002 757-2839 of	ffice@harrisindustrial.info	
						MPLE	DATA	Lab ID	0. # 16-0	527-A	
Sample/L				form - Pro	oduced Wa			<i>a</i> 1		51	
	Method:			C 1147 T	Sample Ho	omogen	ized: No	Sample		eBlanc	
Date/Tim				6 1145 H				Receiv		. 08 2016	
Date/Tim Sample D				6 1430 H ique liquic				Compl	eted: Dec	. 12 2016 1430 Hrs	
TE	ST INFO	DRMAT	ION				PRE-1	TEST PARAM	ETERS		
Reference	Method:				test Temper					inute pre-aeration:	
EPS 1/RM					test D.O.: <u>4</u>				te: 6.5 ± 1 m		
vith 2000					test pH: 5		djusted: <u>No</u>			D.O.: <u>4.5*</u> mg/L	
Type: LC		-	0.111				: <u></u> μS/cm		ntinued:mi		
Fest Orgar	nism: Thi	reespine :	Sticklebad		nity of Sam nity of Cont			Co	nt d througho	out test by airstone	
							DITIONS				
SS Batch	#: <u>53</u>			Load	ling Densit			Phot	operiod: 16L	/8D	
Mortality:	<u>5</u> % over	7 days pr	ior to test		Mean fork length: $42 \text{ mm} \pm 6.0 \text{ mm}$ SD						
					ge: <u>35</u> mm	n - <u>51</u> m	m	Stati	c Test		
Fest Volur		Depth:	<u>17.7</u> cm						tion: 96 hour		
Replicates			10				g ± <u>0.21</u> g	-		Vater: Seawater	
Number of	fish per	vessel:	<u>10</u>	Rang	ge: <u>0.31</u> g ·	- <u>0.84</u> g	5	Tem	perature: 15±	I°C	
		T	EST PAF	AMETE	RS				RESULT	ſS	
	Ini	tial (0 H	rs)		<u>Fi</u> ı	nal (96	<u>Hrs)</u>				
Conc	Temp	D.0	pH	Sal.	Temp	D.0	pH	Number	Number	Comments	
%	°C	mg/L		ppt	°C	mg/L		Dead	Stressed		
100	16.0	4.5*	5.2	250	16.0	4.5	5.2	10/10	0/10	All dead immediately.	
50	16.0	7.0*	6.1	140	16.0	7.1	6.2	10/10	0/10	All dead @ 15 mins.	
25	15.0	7.4*	6.5	87	15.0	7.2	6.6	10/10	0/10	All dead @ 17.5 hrs.	
12.5	15.5	7.4*	6.8	60	15.0	7.4	6.9	10/10	0/10	All dead @ 17.5 hrs.	
6.25	15.0	7.5	7.1	40	15.0	7.4	7.2	10/10	0/10	All dead @ 17.5 hrs.	
3.13	15.0	7.7	7.3	37	14.5	7.9	7.6	0/10	0/10		
Ctl.	15.0	8.0	7.7	30	14.5	9.8	7.8	0/10	0/10		
						IOUR I	C50 RESUI	LTS			
				C50 Valu			4.4%				
					dence Limi	ts:	3.1 – 6.3%				
			S	tatistical I	viethod:		Binomial -	CETIS			

	REFERENCE TOXICANT DATA:	Batch: <u>53</u>
Reference Substance: Phenol	Test Date: <u>Nov. 28 – Dec. 02 2016</u>	96 Hour LC ₅₀ for Phenol: <u>14.4</u> mg/L
95% C.L.: <u>11.5</u> – <u>17.9</u> mg/L	Historical Phenol Mean: 16.4 mg/L	Warning Limits ± 2 SD: $\underline{12.6} - \underline{21.4}$ mg/L

Comments: *D.O. meter was set to maximum salinity setting of 40 ppt. As salinity increases, D.O. value decreases, therefore reported measurements are higher than true measurements. **Loading density exceeded due to low volume of sample received and size of fish. One additional concentration run due to historically high mortality.

Analyst(s): A. Huybers and K. Marks

Date: Dec. 13 2016 Verified by: C. Harris

FISH TOXICITY REPORT (LC₅₀)

Client: Address: Contact:								1320 Ashda Canada	ale Rd., Sou B0N 1Z0	esting Service L uth Rawdon, No office@harrisindust	va Scoti
					SA	MPLE D	АТА	Lab ID	0. # 16	-630	
Sample/L	ocation:	Alr	na Produ	uced Water							
Sampling		Gra			Sample Ho	omogenize	ed: No	Sample		LeBlanc	
Date/Tim				16 1200 Hr				Receiv		ec. 12 2016	
Date/Tim			c. 12 2016 1445 Hrs ear, transparent liquid with a chemical-like odou					Compl	eted: De	ec. 16 2016 144	5 Hrs
Sample D	escription	n: Cle	ear, trans	parent liquic	1 with a ch	iemical-li	ke odour.				
	ST INFC	RMATI	ION					ST PARAM			
Reference					st Temper					minute pre-aerat	ion:
EPS 1/RM	•				st D.O.: <u>7</u>				te: 6.5 ± 1		(T
vith 2000					st pH: <u>6</u> activity of		usted: <u>No</u>		ne: <u>1415</u> hi ntinued: _ m	rs D.O.: <u>8.5</u> mg	L
Гуре: LC ₅ Гest Organ	0		Stickleba		ty of Sam					nn. @ _ nrs nout test by airsto	ne
l'est organ	15111. 1111	cospilie d	, included a		ty of Cont			00	in a unough	iour test by unst	
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-	Γ CONDI					
SS Batch	#: 53			Loadi	ng Density			Phote	operiod: 16	L/8D	
		. 7 .1	prior to t				± <u>3.3</u> mm		100 - 500		
	<u>4.1</u> % ove	r / days p						a	The second se		
	<u>4.1</u> % ove:	r / days p			e: <u>33</u> mm	- <u>44</u> mm	l	Statio	c Test		
Aortality: <u> </u> Test Volur	ne: <u>8</u> L			Range cm		_		Dura	tion: 96 hou		
Mortality: <u>-</u> Fest Volur Replicates:	ne: <u>8</u> L 1 <u>No</u>	Depth: <u>14</u>	4.16 **	Range cm Mean	wet weigh	nt: <u>0.85</u> g	t <u>0.20</u> g	Dura SD Cont	tion: 96 hou rol/Dilution	Water: Seawate	er
Mortality: <u> </u> Fest Volur	ne: <u>8</u> L 1 <u>No</u>	Depth: <u>14</u>	4.16 **	Range cm Mean		nt: <u>0.85</u> g		Dura SD Cont	tion: 96 hou	Water: Seawate	er
Mortality: <u>-</u> Fest Volur Replicates:	ne: <u>8</u> L 1 <u>No</u>	Depth: <u>14</u> vessel:	<u>4.16</u> ** 10	Range cm Mean Range	wet weigl e: <u>0.51</u> g -	nt: <u>0.85</u> g		Dura SD Cont	tion: 96 hou rol/Dilution perature: 15:	Water: Seawate ±1°C	er
Mortality: <u>-</u> Fest Volur Replicates:	ne: <u>8</u> L 1 <u>No</u>	Depth: <u>14</u> vessel:	<u>4.16</u> ** 10	Range cm Mean	wet weigl e: <u>0.51</u> g -	nt: <u>0.85</u> g		Dura SD Cont	tion: 96 hou rol/Dilution	Water: Seawate ±1°C	er
Aortality: <u>-</u> Sest Volur Replicates:	ne: <u>8</u> L <u>No</u> fish per v <u>Init</u>	Depth: <u>14</u> vessel:	4.16 ** 10 EST PA	Range cm Mean Range	wet weigl :: <u>0.51</u> g - S <u>Fir</u>	nt: <u>0.85</u> g · <u>1.18</u> g nal (96 H	g ± <u>0.20</u> g	Dura SD Cont	tion: 96 hou rol/Dilution perature: 15:	Water: Seawate ±1°C	er
Aortality: <u>-</u> est Volur Replicates: Number of Conc	ne: <u>8</u> L <u>No</u> fish per v <u>Init</u> Temp	Depth: <u>1</u> vessel:	4.16 ** 10 EST PA	Range cm Mean Range RAMETER Sal.	wet weigl :: <u>0.51</u> g - S <u>Fir</u> Temp	nt: <u>0.85</u> g <u>1.18</u> g nal (96 H D.O	g ± <u>0.20</u> g	Dura SD Cont Temj Number	tion: 96 hou rol/Dilution perature: 15: RESUL Number	Water: Seawate ±1°C LTS Com	
Mortality: <u>-</u> Fest Volur Replicates: Number of	ne: <u>8</u> L <u>No</u> fish per v <u>Init</u>	Depth: <u>14</u> vessel:	4.16 ** 10 EST PA	Range cm Mean Range	wet weigl :: <u>0.51</u> g - S <u>Fir</u>	nt: <u>0.85</u> g · <u>1.18</u> g nal (96 H	; ± <u>0.20</u> g	Dura SD Cont Temj	tion: 96 hou rol/Dilution perature: 15: RESUL	Water: Seawate ±1°C LTS Com	
Aortality: <u>-</u> Test Volur Replicates: Number of Conc %	ne: <u>8</u> L <u>No</u> fish per v <u>Init</u> Temp °C	Depth: <u>1</u> vessel: <u>1</u> TH tial (0 Hu D.O mg/L	4.16 ** 10 EST PA ((S) pH	Range cm Mean Range RAMETER Sal. ppt	wet weigl :: <u>0.51</u> g - S S F ir Temp °C	nt: <u>0.85</u> g <u>1.18</u> g <u>nal (96 H</u> D.O mg/L	s ± <u>0.20</u> g r <u>s)</u> pH	Dura SD Cont Temj Number Dead	tion: 96 hou rol/Dilution perature: 15: RESUL Number Stressed	Water: Seawate ±1°C .TS Com	nents
Mortality: <u>-</u> Fest Volur Replicates: Number of Conc %	ne: $\underline{8}$ L $\frac{No}{1}$ fish per v Inite Temp $^{\circ}C$ 16.0	Depth: <u>14</u> ressel: TH tial (0 Hi D.O mg/L 8.5	4.16 ** 10 EST PA (5) pH 6.6	Range cm Mean Range RAMETER Sal. ppt 8.7	wet weigl :: <u>0.51</u> g - S F ir Temp °C 16.0	nt: <u>0.85</u> g • <u>1.18</u> g nal (96 H D.O mg/L 9.4	s ± <u>0.20</u> g rs) pH 7.1	Dura SD Cont Temp Number Dead 10/10	tion: 96 hou rol/Dilution perature: 15: RESUL Number Stressed 0/10	Water: Seawate ±1°C .TS Comm All dead @ 17	nents .25 hrs.
Aortality: <u>-</u> Fest Volur Replicates: Jumber of Conc % 100 50	ne: $\underline{8}$ L \underbrace{No} fish per v <u>Init</u> Temp $^{\circ}C$ 16.0 16.0	Depth: <u>14</u> vessel: <u>14</u> vessel: <u>14</u> TH tial (0 Hi D.O mg/L 8.5 8.3	4.16 ** 10 EST PA 5) pH 6.6 6.9	Range cm Mean Range RAMETER Sal. ppt 8.7 20.2	wet weigl :: <u>0.51</u> g - S F ir Temp °C 16.0 14.0	nt: <u>0.85</u> g <u>1.18</u> g <u>nal (96 H</u> D.O mg/L 9.4 9.1	s ± <u>0.20</u> g rs) pH 7.1 7.0	Dura SD Cont Temj Number Dead 10/10 5/10	tion: 96 hou rol/Dilution perature: 15: RESUL Number Stressed 0/10 0/10	Water: Seawate ±1°C .TS Com	nents .25 hrs.
Aortality: <u>-</u> Cest Volur Replicates: Number of Conc % 100 50 25	ne: $\underline{8}$ L No fish per v <u>Init</u> Temp °C 16.0 16.0 16.0 16.0	Depth: <u>14</u> /essel:	4 <u>.16</u> ** 10 EST PA 5 pH 6.6 6.9 7.1	Range cm Mean Range RAMETER Sal. ppt 8.7 20.2 25.4	wet weigl :: <u>0.51</u> g - S S Fir Temp °C 16.0 14.0 14.0 14.0	$\frac{-}{1.18} g$ $\frac{-}{1.18} g$ $\frac{-}{1.18} g$ $\frac{-}{0.0} g$ $\frac{-}{0.0} g$ $\frac{-}{0.0} g$ $\frac{-}{0.1} g$ $\frac{-}{0.1} g$	s ± <u>0.20</u> g rs) pH 7.1 7.0 7.6	Dura SD Cont Temj Number Dead 10/10 5/10 0/10	tion: 96 hou rol/Dilution perature: 15: RESUL Number Stressed 0/10 0/10 0/10	Water: Seawate ±1°C .TS Comm All dead @ 17	nents .25 hrs.
Aortality: est Volur Replicates: Number of Conc % 100 50 25 12.5	ne: $\underline{8}$ L \underbrace{No} fish per v <u>Init</u> Temp $^{\circ}C$ 16.0 16.0	Depth: <u>14</u> vessel: <u>14</u> vessel: <u>14</u> TH tial (0 Hi D.O mg/L 8.5 8.3	4.16 ** 10 EST PA 5) pH 6.6 6.9	Range cm Mean Range RAMETER Sal. ppt 8.7 20.2	wet weigl :: <u>0.51</u> g - S F ir Temp °C 16.0 14.0	nt: <u>0.85</u> g <u>1.18</u> g <u>nal (96 H</u> D.O mg/L 9.4 9.1	s ± <u>0.20</u> g rs) pH 7.1 7.0	Dura SD Cont Temj Number Dead 10/10 5/10	tion: 96 hou rol/Dilution perature: 15: RESUL Number Stressed 0/10 0/10	Water: Seawate ±1°C .TS Comm All dead @ 17	nents .25 hrs.
Aortality: 'est Volur Replicates: Number of Conc % 100 50 25 12.5 6.25	ne: $\underline{8}$ L No fish per v <u>Init</u> Temp °C 16.0 16.0 16.0 16.0 16.0	Depth: <u>14</u> /essel:	4.16 ** 10 EST PA 5) pH 6.6 6.9 7.1 7.3	Range cm Mean Range RAMETER Sal. ppt 8.7 20.2 25.4 27.3	wet weigl :: <u>0.51</u> g - S Temp [°] C 16.0 14.0 14.0 14.0 14.0	nt: <u>0.85</u> g <u>1.18</u> g <u>nal (96 H</u> D.O mg/L 9.4 9.1 8.4 8.5	s ± <u>0.20</u> g rs) pH 7.1 7.0 7.6 7.7	Dura SD Cont Temj Number Dead 10/10 5/10 0/10 0/10	tion: 96 hou rol/Dilution perature: 15: RESUL Number Stressed 0/10 0/10 0/10 0/10	Water: Seawate ±1°C .TS Comm All dead @ 17	nents .25 hrs.
Mortality: Fest Volur Replicates: Number of Conc % 100 50 25	ne: $\underline{8}$ L $\frac{No}{168}$ fish per v fish per v Init Temp °C 16.0 16.0 16.0 16.0 16.0 16.0	Depth: <u>1</u> /essel: <u>tial (0 Hr</u> D.O mg/L 8.5 8.3 8.0 7.9 8.0	4.16 ** 10 EST PA rs) pH 6.6 6.9 7.1 7.3 7.4	Range cm Mean Range RAMETER Sal. ppt 8.7 20.2 25.4 27.3 29.1	wet weigl :: 0.51 g - S F ir Temp °C 16.0 14.0 14.0 14.0 14.0 14.0 14.0	$\frac{-}{1.18} g$	rs) pH 7.1 7.0 7.6 7.7 7.7 7.7	Dura SD Cont Temj Number Dead 10/10 5/10 0/10 0/10 0/10 0/10	tion: 96 hou rol/Dilution perature: 15: RESUL Number Stressed 0/10 0/10 0/10 0/10 0/10	Water: Seawate ±1°C .TS Comm All dead @ 17	nents .25 hrs.
Aortality: Fest Volur Replicates: Number of Conc % 100 50 25 12.5 6.25	ne: $\underline{8}$ L $\frac{No}{168}$ fish per v fish per v Init Temp °C 16.0 16.0 16.0 16.0 16.0 16.0	Depth: <u>1</u> /essel: <u>tial (0 Hr</u> D.O mg/L 8.5 8.3 8.0 7.9 8.0	4.16 ** 10 EST PA (S) pH 6.6 6.9 7.1 7.3 7.4 7.4	Range cm Mean Range RAMETER Sal. ppt 8.7 20.2 25.4 27.3 29.1 29.8	wet weigl :: 0.51 g - S F ir Temp °C 16.0 14.0 14.0 14.0 14.0 14.0 14.0 96 H	nt: <u>0.85</u> g <u>1.18</u> g <u>nal (96 H</u> D.O mg/L 9.4 9.1 8.4 8.5 8.2 8.1 IOUR LO	s ± 0.20 g rs) pH 7.1 7.0 7.6 7.7 7.7 S ₅₀ RESULT	Dura SD Cont Temj Number Dead 10/10 5/10 0/10 0/10 0/10 0/10	tion: 96 hou rol/Dilution perature: 15: RESUL Number Stressed 0/10 0/10 0/10 0/10 0/10	Water: Seawate ±1°C .TS Comm All dead @ 17	nents .25 hrs.
Mortality: Fest Volur Replicates: Number of Conc % 100 50 25 12.5 6.25	ne: $\underline{8}$ L $\frac{No}{168}$ fish per v fish per v Init Temp °C 16.0 16.0 16.0 16.0 16.0 16.0	Depth: <u>1</u> /essel: <u>tial (0 Hr</u> D.O mg/L 8.5 8.3 8.0 7.9 8.0	4.16 ** 10 EST PA (S) pH 6.6 6.9 7.1 7.3 7.4 7.4 7.4	Range m Mean Range RAMETER Sal. ppt 8.7 20.2 25.4 27.3 29.1 29.8 LC ₅₀ Value:	wet weigl :: 0.51 g - S F ir Temp °C 16.0 14.0 14.0 14.0 14.0 14.0 96 H	$\frac{-}{1.18} g$ ht: $0.85 g$ hal (96 Hi D.O mg/L 9.4 9.1 8.4 8.5 8.2 8.1 IOUR LC	s ± 0.20 g rs) pH 7.1 7.0 7.6 7.7 7.7 50 RESULT 50.0%	Dura SD Cont Temj Number Dead 10/10 5/10 0/10 0/10 0/10 0/10 0/10	tion: 96 hou rol/Dilution perature: 15: RESUL Number Stressed 0/10 0/10 0/10 0/10 0/10	Water: Seawate ±1°C .TS Comm All dead @ 17	nents .25 hrs.
Aortality: Fest Volur Replicates: Number of Conc % 100 50 25 12.5 6.25	ne: $\underline{8}$ L $\frac{No}{168}$ fish per v fish per v Init Temp °C 16.0 16.0 16.0 16.0 16.0 16.0	Depth: <u>1</u> /essel: <u>tial (0 Hr</u> D.O mg/L 8.5 8.3 8.0 7.9 8.0	4.16 ** 10 EST PA (5) pH 6.6 6.9 7.1 7.3 7.4 7.4 7.4	Range cm Mean Range RAMETER Sal. ppt 8.7 20.2 25.4 27.3 29.1 29.8	wet weigl :: 0.51 g - S S Temp °C 16.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0	$\frac{-}{1.18} g$ $\frac{-}{1.18} g$ $\frac{-}{1.18} g$ $\frac{-}{1.18} g$ $\frac{-}{0.18} g$	s ± 0.20 g rs) pH 7.1 7.0 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7	Dura SD Cont Temj Number Dead 10/10 5/10 0/10 0/10 0/10 0/10 0/10	tion: 96 hou rol/Dilution perature: 15: RESUL Number Stressed 0/10 0/10 0/10 0/10 0/10 0/10	Water: Seawate ±1°C .TS Comm All dead @ 17	nents .25 hrs.
Aortality: Fest Volur Replicates: Number of Conc % 100 50 25 12.5 6.25	ne: $\underline{8}$ L $\frac{No}{168}$ fish per v fish per v Init Temp °C 16.0 16.0 16.0 16.0 16.0 16.0	Depth: <u>1</u> /essel: <u>tial (0 Hr</u> D.O mg/L 8.5 8.3 8.0 7.9 8.0	4.16 ** 10 EST PA (5) pH 6.6 6.9 7.1 7.3 7.4 7.4 7.4	Range Cm Mean Range RAMETER Sal. ppt 8.7 20.2 25.4 27.3 29.1 29.8 LC ₅₀ Value: 95% Confide Statistical M	wet weigl :: 0.51 g - S F ir Temp °C 16.0 14.0 14.0 14.0 14.0 14.0 14.0 96 H : ence Limit ethod:	$\frac{-}{1.18} g$ $\frac{-}$	s ± 0.20 g pH 7.1 7.0 7.6 7.7 7.7 7.7 50.0% 40.2 – 62.3% Spearman Ka	Dura SD Cont Temj Number Dead 10/10 5/10 0/10 0/10 0/10 0/10 0/10 S S arber - CETIS	tion: 96 hou rol/Dilution perature: 15: RESUL Number Stressed 0/10 0/10 0/10 0/10 0/10 0/10	Water: Seawate ±1°C .TS Comm All dead @ 17	nents .25 hrs.
Mortality: Fest Volur Replicates: Number of Conc % 100 50 25 12.5 6.25 Ctl.	ne: $\underline{8}$ L <u>No</u> fish per v <u>Init</u> Temp $^{\circ}$ C 16.0 16.0 16.0 16.0 16.0 16.0	Depth: <u>1</u> 4 ressel: <u>1</u> TH tial (0 Hr D.O mg/L 8.5 8.3 8.0 7.9 8.0 7.9 8.0 7.8	4.16 ** 10 EST PA 5.6 6.6 6.9 7.1 7.3 7.4 7.4 7.4	Range m Mean Range RAMETER Sal. ppt 8.7 20.2 25.4 27.3 29.1 29.8 LC ₅₀ Value: 95% Confide Statistical M REFEF	wet weigl :: 0.51 g - S Fir Temp °C 16.0 14.0	$\frac{-}{1.18} g$ $\frac{-}$	s ± 0.20 g pH 7.1 7.0 7.6 7.7 7.7 7.7 5.0 RESULT 50.0% 40.2 - 62.3% Spearman Ka	Dura SD Cont Temj Number Dead 10/10 5/10 0/10 0/10 0/10 0/10 0/10 0/1	tion: 96 hou rol/Dilution perature: 15: RESUL Number Stressed 0/10 0/10 0/10 0/10 0/10	Water: Seawate ±1°C .TS · Comr l All dead @ 17 See Commer	nents .25 hrs.
Mortality: Fest Volur Replicates: Number of Conc % 100 50 25 12.5 6.25 Ctl. Refere	ne: $\underline{8}$ L $\frac{No}{168}$ fish per v fish per v Init Temp °C 16.0 16.0 16.0 16.0 16.0 16.0	Depth: <u>14</u> ressel: <u>14</u> ressel: <u>14</u> TH tial (0 Hr D.O mg/L 8.5 8.3 8.0 7.9 8.0 7.9 8.0 7.8	4.16 ** 10 EST PA (S) pH 6.6 6.9 7.1 7.3 7.4 7.4 7.4 7.4 	Range Cm Mean Range RAMETER Sal. ppt 8.7 20.2 25.4 27.3 29.1 29.8 LC ₅₀ Value: 95% Confide Statistical M	wet weigl :: 0.51 g - S Fir Temp °C 16.0 14.0 14.0 14.0 14.0 14.0 14.0 96 H : :ethod: RENCE T : Nov. 28	$\frac{-}{1.18} g$ $\frac{-}{1.18} g$ $\frac{-}{1.18} g$ $\frac{-}{1.18} g$ $\frac{-}{1.18} g$ $\frac{-}{0.0} g$ $\frac{-}{1.18} g$ $\frac{-}{0.01} g$ $\frac{-}{1.18} g$ $\frac{-}{0.01} g$ $\frac{-}{1.18} g$	$\frac{(5)}{(5)} = \frac{1}{(5)} $	Dura SD Cont Temj Number Dead 10/10 5/10 0/10 0/10 0/10 0/10 0/10 0/1	tion: 96 hou rol/Dilution perature: 15: RESUL Number Stressed 0/10 0/10 0/10 0/10 0/10 0/10 0/10	Water: Seawate ±1°C .TS Comm All dead @ 17	nents .25 hrs. t

Analyst(s): A. Huybers

Verified by: C. Harris

Date: Dec. 19 2016

FISH TOXICITY REPORT (LC50)

Client:	Exxon M										sting Service Ltd.
Address:	Founder		re				Locat				h Rawdon, Nova Scotia
	Halifax,)N 1Z0	
Contact:	Megan	Futtle					Ph : 90	2 757-0232	Fax: 902	757-2839 of	ffice@harrisindustrial.info
						MPLE D			Lab ID. #	# 16-6	527-В
Sample/L	ocation:	Sc	outh Vent	ure Produc	ed Water, S			141-C			
Sampling			rab		Sample Ho	omogeniz	ed: No	C	Sampler:		
Date/Tim	e Collected	i: De	ec. 07 201	6 1240 H	Irs				Received	l: Dec	. 08 2016
Date/Tim	e Started:	De	ec. 08 201	6 1430 H	lrs				Complete	ed: Dec	. 12 2016 1430 Hrs
Sample D	escription:	Ye	ellow, trai	nsparent lie	quid.						
ТЕ	ST INFO	RMAT	ION				PRE	TEST P	ARAME	TERS	
Reference				Pre-	test Temper	ature: <u>14.</u>					inute pre-aeration:
EPS 1/RM	/10 July 19	90		Pre-	test D.O.: 8	<u>8.0</u> mg/L	r		Rate:	<u>6.5 ± 1</u> m	ıl/min/L
with 2000 .	Amendmen	nts		Pre-	test pH: 6	<u>.7</u> Ādj	usted: <u>N</u>	<u>lo</u>	Time	: <u>1400</u> hrs	D.O.: <u>8.6</u> mg/L
Гуре: LC ₅	$_0$ Tox 9	€B		Con	ductivity of	Sample:	<u></u> µS/cm	1	Conti	nued: _ min	n. @ _ hrs
Fest Organ	ism: Thre	espine	Stickleba		nity of Sam				Cont	'd througho	ut test by airstone
				Salir	nity of Cont	rol: <u>30.3</u>	ppt				
						Γ CONDI					
FSS Batch					ling Density					eriod: 16L	/8D
Mortality:	<u>5</u> % over 7	days p	rior to tes		n fork lengt			nm SD	Lux: 100 - 500		
					ge: <u>46</u> mm	- <u>55</u> mr	n		Static 7		
	ne: <u>10</u> L	Depth:	<u>17.7</u> cr							on: 96 hours	
Replicates:					n wet weigł		± 0.16	g SD			Vater: Seawater
Number of	fish per ve	essel:	<u>10</u>	Rang	ge: <u>0.68</u> g -	<u>1.18</u> g			Temper	rature: 15±	1°C
		Т	EST PA	RAMETE	RS					RESULT	ſS
	.	1 (0 1				1 (0 6 11					
Com		<u>al (0 H</u>		C -1		<u>nal (96 H</u>		NT		N	Comments
Conc	Temp	D.O	pН	Sal.	Temp	D.O	pН		mber	Number	Comments
%	°C	mg/L		ppt	°C	mg/L		D	ead	Stressed	
100	14.5	8.6	6.9	0.7	15.0	9.4	7.9	1)/10	0/10	All dead @ 17.5 hrs.
50	14.5	8.2	6.9	15.5	14.5	8.2	7.6	1	/10	0/10	1 dead @ 90 hrs.
25	15.0	8.3	7.0	22.4	14.5	8.6	7.7		/10	0/10	

14.5 8.6

8.0

7.9

7.9

14.5

14.5

14.5

Reference Substance: Phenol 95% C.L.: <u>11.5</u> – <u>17.9</u> mg/L

12.5

6.25

Ctl.

15.0

15.0

15.0

8.2

8.1

8.0

7.1

7.4

7.7

26.0

28.0

30.3

LC₅₀ Value:

95% Confidence Limits:

Statistical Method:

REFERENCE TOXICANT DATA: Test Date: Nov. 28 - Dec. 02 2016 Historical Phenol Mean: 16.4 mg/L

7.6

7.6

7.6

66.0%

57.8 - 75.3%

Spearman Karber - CETIS

96 HOUR LC₅₀ RESULTS

Batch: 53 96 Hour LC₅₀ for Phenol: <u>14.4</u> mg/L Warning Limits ± 2 SD: $\underline{12.6} - \underline{21.4}$ mg/L

0/10

0/10

0/10

0/10

0/10

0/10

Comments: *Salinity of sample <10ppt. **Loading density exceeds 0.5 g/L due to size of fish and volume of effluent available.

Analyst(s): A. Huybers and K. Marks

Verified by: C. Harris

Date: Dec. 12 2016

Work Order :232490Sample Number :49736

SAMPLE IDENTIFICATION

Company :	Harris Industrial Testing Service Ltd.	Time Collected: 13:00
Location :	South Rawden NS	Date Collected : 2016-11-28
Substance :	THEBAUD- CRUDESORB OUT/OVER BOARD WATER	Sample Volume : 1 x 1 L jar
Sampling Method :	Grab	Date Received : 2016-11-30
Sampled By :	B. Huder (Exxon)	Date Tested : 2016-12-01
Sample Description :	Clear, colourless, odourless.	Temp. on arrival :11.0°C
Substance : Sampling Method : Sampled By :	THEBAUD- CRUDESORB OUT/OVER BOARD WATER Grab B. Huder (Exxon)	Sample Volume : 1 x 1 L jar Date Received : 2016-11-30 Date Tested : 2016-12-01

Test Method : Toxicity Test Using Luminescent Bacteria, Protocol EPS 1/RM/24, Environment Canada, 1992.

TEST RESULTS							
Test Endpoint	Value	95% Confidence Limits	Calculation Method				
15 minute IC50	1.47%	1.29-1.66	Least Square Regression				

The results reported relate only to the sample tested.

REFERENCE TOXICANT DATA

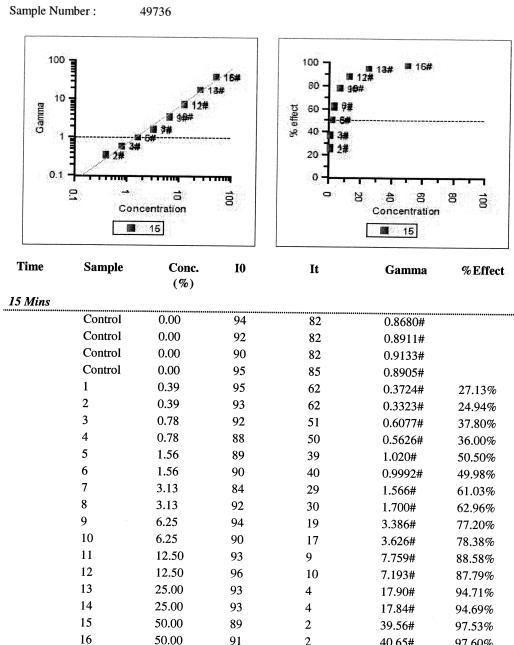
Reagent Batch : 15K4119A 15 minute IC50 : 0.71 mg/L Expiry Date : 10/2017 95% Confidence Limits : 0.57-0.89 mg/L Date Tested (yyyy-mm-dd): 2016-12-01 Historical Mean IC50 : 0.83 mg/L Reference Substance : Zinc (as zinc sulphate) Warning Limits $(\pm 2SD)$: 0.64-1.08 mg/L Statistical Method : Least Square Regression Analyst(s): AW

CONDITIONS OF ACUTE MICROTOX TEST

Test Organism :	Vibrio fischeri	Test Initiation Time :	11:55
Reagent Batch :	15K4119A	Observation Time(s) :	15 minutes
Date Reagent Received :	2016-05-17	Sample Pre-aeration/Aeration	: None
Reagent Holding Temperature :	-23 °C	Sample pH :	6.4
Analyzer Model Number :	M500	pH Adjustment :	None
Test Well Temperature :	15.0 ± 0.3 °C	Salinity Adjustment :	Yes
Highest Concentration Tested :	50 %	Final Salinity :	≥2% NaCl
Number of Controls :	2	Dilution Water :	AquaTox Diluent
Number of Concentrations Tested :	8	Sample Storage :	4±2 °C
Number of Replicates :	2	Colour Correction :	None
Appearance of Test Solutions :	No changes noted.	Analyst(s):	AW
		Test Method Deviation(s) :	None

016-12-22 Date: yyyy-mm-dd

Approved by: Project Manager


Accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA)

Work Order :

232490

TOXICITY TEST REPORT **MICROTOX®** EPS 1/RM/24 Page 2 of 2

- included, * - invalid

40.65#

Statistics:

Data: 15 Mins

EC50 Concentration: 1.466% (95% Confidence Range: 1.294 to 1.659) 95% Confidence Factor: 1.132 Estimating Equation: $LOG C = 1.008 \times LOG G + 0.1660$ Correction Factor: 0.8907 Slope: 0.9793 Coeff of Determination (R^2): 0.9875

97.60%

TOXICITY TEST REPORT

Lytechinus pictus EPS 1/RM/27 Page 1 of 4

 Work Order :
 232490

 Sample Number :
 49736

SAMPLE IDENTIFICATION

Company :	Harris Industrial Testing Service Ltd.		
Location :	South Rawden NS	Date Collected :	2016-11-28
Substance :	THEBAUD- CRUDESORB OUT/OVER BOARD WATER	Time Collected :	13:00
Sampling Method :	Grab	Date Received :	2016-11-30
Sampled By :	B. Huder (Exxon)	Time Received :	10:40
Temp. on arrival :	11.0°C	Date Tested :	2016-12-01
Sample Description :	Clear, colourless, odourless.		
Test Method :	Fertilization Assay Using Echinoids (Sea Urchins and Sand Do	llars). Environment Ca	anada,

Fertilization Assay Using Echinoids (Sea Urchins and Sand Dollars). Environment Canada, Conservation and Protection. Ottawa, Ontario. EPS 1/RM/27, 2nd ed. (February 2011).

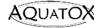
TEST RESULTS						
Effect	Value	95% Confidence Limits	Statistical Method			
IC25 (Fertilization)	15.3%	11.4-19.2	Non Linear Regression* (CETIS) a			

COPPER (AS COPPER SULPHATE) REFERENCE TOXICANT DATA

Date Tested :	2016-12-01	Statistical Method :	Non-Linear Regression* (CETIS) ^a
Gamete Batch :	Ur16-12-01	Historical Mean IC25 :	111 µg/L
Test Duration :	20 minutes	Warning Limits (± 2SD) :	36 - 336 μg/L
IC25 Fertilization :	69 μg/L	Analyst(s) :	AS, DK, MC
95% Confidence Limits :	59 - 78 μg/L	• • •	
The reference toxicent test	was nonformed under the	ome	

The reference toxicant test was performed under the same experimental conditions as those used with the test sample.

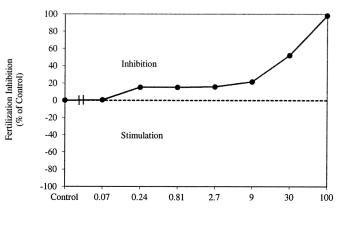
TEST CONDITIONS


Test Vessel :	20 mL glass scintillation vial	Control/Dilution Water ¹ :	Artificial Sea Water
Volume per Replicate :	10 mL	Sperm Exposure Time ² :	20 min
Number of Replicates :	4 per treatment	Egg Exposure Time :	10 min
Depth of Test Solution :	Approx. 3 cm	Total Duration of Test :	20 min
Sperm Density :	40000000 per vessel	pH Adjustment :	None
Sperm : Egg Ratio :	20000:1	Sample Filtration :	None
Males Used to Pool Sperm :	4	Test Aeration :	None
Females Used to Pool Eggs :	3	Test Method Deviation(s) :	None
¹ no additional chemicals ² 10 min exposure continued	for an additional 10 min after a	addition of ages	

² 10 min exposure, continued for an additional 10 min after addition of eggs

COMMENTS

*Binomial weighting (CETIS^a) was applied.


•All test validity criteria as specified in the test method cited above were satisfied.

Lytechinus pictus EPS 1/RM/27 Page 2 of 4

Work Order :232490Sample Number :49736

Sea Urchin Fertilization Inhibition

Concentration (%)

TEST ORGANISM

Adult Test Organism :	Lytechinus pictus	Holding Salinity :	34 ± 2 ‰
Adult Organism Source :	Marinus Scientific	Holding Vessel :	Glass aquaria
Source Location :	Garden Grove CA USA	Adult Mortality Rate :	0% (previous 7 days)
Date Received :	2016-05-04	Life Stage Tested :	Gamete (sperm/egg)
Holding Water :	Artificial Sea Water	Gamete Batch Tested :	Ur16-12-01
Holding Temperature :	12 - 15 °C		
Reference :	Recommended Procedure for the Importation of Environment Canada, September 1999.	Test Organisms for Subleth	al Toxicity Testing.

REFERENCES

^a CETIS, © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, McKinleyville, Calif. 95519[Program on disk and printed User's Guide].

Date :

Project Manager

yyyy-mm-dd

Approved By :

Lytechinus pictus EPS 1/RM/27 Page 3 of 4

Work Order :232490Sample Number :49736

FERTILIZATION DATA

Test Conducted By: DK Enumerated By: DK

Concentration (%)	Replicate	Fertilized	Unfertilized	% Fertilized	Treatment Mean Fertilization (%)	Standard Deviation
Control	А	91	9	91	88.5	2.65
	В	85	15	85		
	С	90	10	90		
	D	88	12	88		
Blank	А	0	100	0	0	0.00
	В	0	100	0		
	С	0	100	0		
	D	0	100	0		
0.006	А		_		_	_
	В	_	_	_		
	С	_	_	-		
	D	_	-	-		
.02	A				_	-
	В	_	_	_		
	C	_	_			
	D	_	_			
0.07	A	89	11	89	88	3.74
	В	88	12	88		
	C	83	17	83		
	D	92	8	92		
.24	A	75	25	75	75	2.16
	В	72	28	72		
	C	77	23	77		
	D	76	24	76		
.81	A	77	23	77	75	1.83
.01	В	76	23	76	10	1.00
	C	74	24	74		
	D	73	20	73		
.7	A	70	30	70	74.5	5.20
• /	B	77	33	70	/ 4.5	5.20
	C B	79	21	70 79		
	D	79	21	79		
***	<u>D</u> A	68	32	68	69.25	4.86
	B	72	28	72	07.23	4.00
	C	72	26	72 74		
	D	63	37	63		
0	<u>D</u> A	41	59	41	42.25	5.38
0		36	59 64		42.23	3.38
	B C	30 43	64 57	36 43		
00		<u>49</u> 2	<u>51</u> 98	49	1.5	1 40
00	A			2	1.5	1.29
	В	1	99 97	1		
	C	3	97	3		
	D	0	100	0		

"-" = not counted/not required

NOTES :

•No organisms or gametes exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

•Gamete viability test was performed prior to pooling of test gametes.

•A pre-test was not required.

•Preserved eggs were stored for 5 days prior to enumeration.

•No outlying data points were detected according to Grubbs Test (CETIS)^a

Data Reviewed By : _____ Date : ______ 2016-12-19

Lytechinus pictus EPS 1/RM/27 Page 4 of 4

Work Order :		232490
Sample Number	:	49736

INITIAL WATER CHEMISTRY (100% SAMPLE)

	Temp.(°C)	рН	Dissolved O ₂ (mg/L)	O2 Sat. (%)*	Salinity (‰)	Pre-aeration Time (h) ³
Initial Chemistry:	20.5	7.4	8.6	99	10	-
Chemistry after Salinity Adjustment :	21.0	6.5	7.2	100	28	-
Chemistry after Pre-Aeration :	-		-	_		0:00

SALINITY ADJUSTMENT

Method :	Direct Salt Addition	Volume Adjusted :	500 mL
Salt Added :	Instant Ocean TM	Amount of Salt Added	:11 g
Date Adjusted :	2016-11-30	Aging Time :	~17 hours
Aging Conditions :	Sealed, complete darkness, minimal air space	Aging Temperature :	4±2°C

Reference : Salinity Adjustment Guidance Document. Environment Canada, revised December 2001^e.

EXPOSURE CONCENTRATIONS WATER CHEMISTRY

	Temp.(°C)	рН	Dissolved O ₂	O2 Sat. (%)*	Salinity (‰)
Concentration (%)			(mg/L)		
Control	20.0	8.2	7.2	100	28
Blank	20.0	8.2	7.2	100	28
0.006	20.0	8.2	7.3	100	28
0.02	20.0	-	_	_	_
0.07	20.0		_	_	_
0.24	20.0	-	-	_	<u> </u>
0.81	20.0				_
2.7	20.0	_	_		
9	20.0	8.1	7.3	100	28
30	20.0			_	_
100	20.0	8.1	7.2	99	28

* % saturation, adjusted for temperature and barometric pressure

"–" not required/not measured

³ if required, at <100 bubbles/min

TESTING SIC. LAD Volume (eg. 2 x 1L, 3 x 10L, etc.) Sample Method and Volume # of Containers and Standard Marine COC including solid phase microtox xls NS Benzo composite V. dene AquaTox Testing & Consulting Inc. 11B Nicholas Beaver Road, RR #3 Guelph, Ontario Canada N1H 6H9 (519) 763-4419 SAMPLE (Seeng Broch Xotoroim \Im 757-0232 > 757 - 2839 Client HARRES IN DUSTRIAL HAKKL NIWORD BINS LEVINING 9 Manne Polychaale boqiriqmA annsM Isvivru2 1320-ASHARLE So. KAWDON Fax: Analyses Requested Isvia Urchin Larval InemgoleveO 1 AKOL Bive Mussel Larvai Development (519) 763-4412 (endor 902 902 Shipping Address: Champia Reproduction Sea Urchin Fertilization Y Contact: Phone: Volce: Fax: Please list any special requests or instructions: niverside Grown REFMISSION TO Temp. on arrival 11.0 0 K D 195796 AquaTox Sample Number 2975 19 m -PN N · CRUNESCRED OUT CHAIN OF CUSTODY RECORD I Ta OVE LOCARDIDATER W Sample Identification Agua Tax Work Outlan No. GANGOD Sample Name Custody Relinquished by: CARY HARAUS -110 B. HUDER EXXON MOBIL THEBAUD 53 P.O. Number. THEBAUD Alime Q l Nov **AQUATOX** Sample Storage (prior to shipping): Time Collected (e.g. 14:30, 24 hr clock) Field Sampler Name (print): Ċ 1320 For Lab Use Only Date/Time Shipped: 346-11-28 **Date Collected** Storage Temp.(C) (bb-mm-dd) Storage Location: Affiliation. Signature: Received By: Date: Time:

Work Order :232566Sample Number :49843

		SAMPLE ID	ENTIFIC	ATION		
		esting Service Ltd.		Time Collected	1: 1	1:45
Location : So	South Rawden NS			Date Collected	: 2	2016-12-07
Substance : Ve	Venture Platform Produce Water			Sample Volum	ie: 1	x 1 L jar
	t provided			Date Received		2016-12-09
	LeBlanc (Exxor			Date Tested :		2016-12-09
Sample Description : Clo	oudy, grey, mod	erate odour.		Temp. on arriv	al: 1	0.0°C
Test Method : To	xicity Test Usin	g Luminescent Bac	cteria, Prot	ocol EPS 1/RM/24, Er	nvironme	ent Canada, 1992.
		TEST	RESULTS			
Test Endpoint	Value	e	95% Con	fidence Limits	Calc	culation Method
15 minute IC50	2.20%	10	1.7	75-2.77	Least S	Square Regression
		The results reported rela	ate only to the	e sample tested.		
		REFERENCE 1	FOXICAN	T DATA		
Reagent Batch :	1	5K4119A		15 minute IC50 :		0.71 mg/L
Expiry Date :	1	0/2017	95% Confidence Limits :		0.57-0.89 mg/L	
Date Tested (yyyy-mm-	dd): 2	2016-12-01		Historical Mean IC50	:	0.83 mg/L
Reference Substance :	Z	Zinc (as zinc sulpha	ate)	Warning Limits (± 2S	D):	0.64-1.08 mg/L
Statistical Method :	Ι	east Square Regre	ession	Analyst(s):		AW
		NDITIONS OF AC	THE MIC	NDATAY TEST		
		NDITIONS OF AC		KOTOA TEST		
Test Organism :	V	/ibrio fischeri		Test Initiation Time :		14:00
Reagent Batch :	- 1	5K4119A		Observation Time(s)	:	15 minutes
Date Reagent Received	: 2	016-05-17		Sample Pre-aeration/A	Aeration	: None
Reagent Holding Tempo	erature : -	24 °C		Sample pH :		5.2
Analyzer Model Numbe	er: N	A 500		pH Adjustment :		None
Test Well Temperature	: 1	$5.0 \pm 0.3 \ ^{\circ}\text{C}$		Salinity Adjustment :		Not required
Highest Concentration 7		0%		Final Salinity :		≥2% NaCl
Number of Controls :	2			Dilution Water :		AquaTox Diluent
Number of Concentration	ons Tested : 8			Sample Storage :		4±2 °C

Number of Replicates :

Appearance of Test Solutions :

Approved by Project Manager

None

None

AW

Colour Correction :

Test Method Deviation(s) :

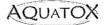
Analyst(s):

Accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA)

2

No changes noted.

III 13#


경 않 않 영 영 Concentration

15

40 45

MICROTOX®

EPS 1/RM/24 Page 2 of 2

Work Order :232566Sample Number :49843

100

10

1

0.1

3

Gamma

1

49843 100 **■** 13# 12# 80 III 90# 🏽 扫描 % effect 60 7费 3### 40 瞬 名井 ₩ 3[#] 3.# 20 ■ 2篇 4# m 0 5 10 0 S 10 Concentration 15

Time	Sample	Conc. (%)	I0	It	Gamma	%Effect
15 Mins			~ ~		0.05004	
	Control	0.00	93	80	0.8588*	
	Control	0.00	88	83	0.9400#	
	Control	0.00	87	87	0.9980#	
	Control	0.00	90	85	0.9477#	
	1	0.39	91	71	0.2271#	18.50%
	2	0.39	89	71	0.2029#	16.87%
	3	0.78	88	58	0.4640#	31.69%
	4	0.78	72	60	0.1575#	13.61%
	5	1.56	89	49	0.7427#	42.62%
	6	1.56	90	51	0.7024#	41.26%
	7	3.13	85	36	1.292#	56.37%
	8	3.13	84	40	1.031#	50.76%
	9	6.25	93	25	2.555#	71.87%
	10	6.25	89	25	2.500#	71.43%
	11	12.50	91	13	5.952#	85.62%
	12	12.50	83	14	4.644#	82.28%
	13	25.00	98	3	34.63#	97.19%
	14	25.00	91	3	27.37#	96.48%
	15	50.00	93	0	889.9*	99.89%
	16	50.00	93	0	894.4*	99.89%
					# - include	ed, * - invalid

Statistics:

Data: 15 Mins

EC50 Concentration: 2.201%(95% Confidence Range: 1.750 to 2.769) 95% Confidence Factor: 1.258Estimating Equation: LOG C = $0.8217 \times LOG$ G +0.3427Correction Factor: 0.9619Slope: 1.138Coeff of Determination (R^2): 0.9351

> Test Data Reviewed By : <u>FTS</u> Date : <u>2017-01-05</u>

TOXICITY TEST REPORT

Lytechinus pictus EPS 1/RM/27 Page 1 of 4

Work Order :232566Sample Number :49843

SAMPLE IDENTIFICATION

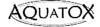
Test Method : Fertilization Assay Using Echinoids (Sea Urchins and Sand Dollars). Environment Can Conservation and Protection. Ottawa, Ontario. EPS 1/RM/27, 2nd ed. (February 2011) deviation(s) as noted below. TEST RESULTS Effect Value 95% Confidence Limits Statistical Methor IC25 (Fertilization) 0.12% 0.10-0.14 Non Linear Regression The results reported relate only to the sample tested.								
Effect Value 95% Confidence Limits Statistical Method IC25 (Fertilization) 0.12% 0.10-0.14 Non Linear Regression The results reported relate only to the sample tested.	Conservation and Protection. Ottawa, Ontario. EPS 1/RM/27, 2nd ed. (February 2011), with							
IC25 (Fertilization) 0.12% 0.10-0.14 Non Linear Regression The results reported relate only to the sample tested.	TEST RESULTS							
The results reported relate only to the sample tested.	ıod							
	n* (CETIS) a							
COPPER (AS COPPER SULPHATE) REFERENCE TOXICANT DATA	COPPER (AS COPPER SULPHATE) REFERENCE TOXICANT DATA							
Date Tested :2016-12-09Statistical Method :Non-Linear Regress	sion* (CETIS) ^a							
Gamete Batch : Ur16-12-02 Historical Mean IC25 : 108 µg/L	· · · · · · · · · · · · · · · · · · ·							
Test Duration :20 minutesWarning Limits ($\pm 2SD$) : 35 - 334 µg/L								
IC25 Fertilization : 51 µg/L Analyst(s) : AS, RD, SEW								
95% Confidence Limits : 47 - 54 µg/L								

The reference toxicant test was performed under the same experimental conditions as those used with the test sample.

TEST CONDITIONS

Test Vessel :	20 mL glass scintillation vial	Control/Dilution Water ¹ :	Artificial Sea Water
Volume per Replicate :	10 mL	Sperm Exposure Time ² :	20 min
Number of Replicates :	4 per treatment	Egg Exposure Time :	10 min
Depth of Test Solution :	Approx. 3 cm	Total Duration of Test :	20 min
Sperm Density :	40000000 per vessel	pH Adjustment :	None
Sperm : Egg Ratio :	20000:1	Sample Filtration :	None
Males Used to Pool Sperm :	4	Test Aeration :	None
Females Used to Pool Eggs :	4	Test Method Deviation(s)	: Yes (see 'Comments')

¹no additional chemicals


² 10 min exposure, continued for an additional 10 min after addition of eggs

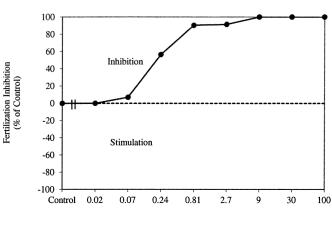
COMMENTS

Noted Deviation(s): The salinity of the 100% sample as submitted was 220%. Salinity of the 100%, 30%, 9%, and 2.7% exposure concentrations exceeded the maximum of 32% allowed by the test method cited above.

*Binomial weighting (CETIS)^a was applied.

•All test validity criteria as specified in the test method cited above were satisfied.

Lytechinus pictus EPS 1/RM/27 Page 2 of 4


Work Order : Sample Number :

Reference :

232566 49843

alities .

Concentration (%)

TEST ORGANISM

Adult Test Organism :Lytechinus pictusAdult Organism Source :Marinus ScientificSource Location :Garden Grove CA USADate Received :2016-05-04Holding Water :Artificial Sea WaterHolding Temperature :12 - 15 °C

Environment Canada, 1999.^c

Holding Salinity : Holding Vessel : Adult Mortality Rate : Life Stage Tested : Gamete Batch Tested : 34 ± 2 ‰ Glass aquaria 0% (previous 7 days) Gamete (sperm/egg) Ur16-12-02

REFERENCES

- ^a CETIS, © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, McKinleyville, Calif. 95519[Program on disk and printed User's Guide].
- ^cEnvironment Canada. "Recommended Procedure for the Importation of Test Organisms for Sublethal Toxicity Testing", Unpublished Report, September 1999, 21 p. Method Development and Applications Section, Environmental Technol. Centre, Ottawa, ON (1999).
- ^eEnvironment Canada. 2001. Revised Procedures for Adjusting Salinity of Effluent Samples for Marine Sublethal Toxicity Testing Conducted under Environmental Effects Monitoring (EEM) Programs. Method Development and Applications Section, Environmental Technology Centre, December 2001.

Date : ________

yyyy-mm-d

Approved By :

116 Project Manager

Lytechinus pictus EPS 1/RM/27 Page 3 of 4

Work Order :232566Sample Number :49843

FERTILIZATION DATA

Test Conducted By : RD/AS Enumerated By : SEW

Concentration (%)	Replicate	Fertilized	Unfertilized	% Fertilized	Treatment Mean Fertilization (%)	Standard Deviation
Control	А	98	2	98	95	2.16
	В	95	5	95		
	С	93	7	93		
	D	94	6	94		
Blank	Α	0	100	0	0	0.00
	В	0	100	0		
	С	0	100	0		
	D	0	100	0		
0.02	А	95	5	95	95	0.82
	В	95	5	95		
	С	94	6	94		
	D	96	4	96		
0.07	Α	83	17	83	88.25	3.86
	В	92	8	92		
	С	90	10	90		
	D	88	12	88		
0.24	A	33	67	33	41.25	6.02
	В	47	53	47		
	С	44	56	44		
	D	41	59	41		
0.81	A	9	91	9	9	2.45
	В	6	94	6		
	С	9	91	9		
	D	12	88	12		
2.7	Α	4	96	4	8	2.94
	В	9	91	9		
	Ċ	11	89	11		
	D	8	92	8		
9	A	0	100	0	0	0.00
	В	0	100	0		
	C	0	100	0		
	D	0	100	0		
30	Ā	0	100	0	0	0.00
	В	0	100	0		
	C	0	100	0		
	D	0	100	0		
100	A	0	100	0	0	0.00
	В	0	100	Ő	-	
	C	ů 0	100	Ő		
	D	Ő	100	ů 0		

"-" = not counted/not required

NOTES :

•No organisms or gametes exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

•Gamete viability test was performed prior to pooling of test gametes.

•A pre-test was not required.

•Preserved eggs were stored for 13 days prior to enumeration.

•No outlying data points were detected according to Grubbs Test (CETIS)^a

Data Reviewed By : TDate : 2017 - 01 - 04

Lytechinus pictus EPS 1/RM/27 Page 4 of 4

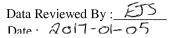
 Work Order :
 232566

 Sample Number :
 49843

INITIAL WATER CHEMISTRY (100% SAMPLE)

	Temp.(°C)	рН	Dissolved O ₂ (mg/L)	O ₂ Sat. (%)*	Salinity (‰)	Pre-aeration Time (h) ³
Initial Chemistry:	20.0	5.4	6.0	84	220	_
Chemistry after Salinity Adjustment :	_		_	_	_	_
Chemistry after Pre-Aeration :	-	-	_	_	-	0:00

SALINITY ADJUSTMENT


EXPOSURE CONCENTRATIONS WATER CHEMISTRY

	Temp.(°C)	pН	Dissolved O ₂	O2 Sat. (%)*	Salinity (‰)	
Concentration (%)			(mg/L)			
Control	20.0	8.1	7.4	100	30	
Blank	20.0	8.1	7.4	100	30	
0.02	20.0	8.1	7.4	98	30	
0.07	20.0	8.1	7.5	99	30	
0.24	20.0	8.1	7.5	98	30	
0.81	20.0	8.0	7.4	97	31	
2.7	20.0	7.6	7.1	93	37	
9	20.0	7.1	6.8	90	48	
30	20.0	6.7	6.8	90	90	
100	20.0	5.8	6.1	81	220	

* % saturation, adjusted for temperature and barometric pressure

"-" not required/not measured

³ at <100 bubbles/min

Note: The 100% sample did not require salinity adjustment since the initial sample salinity was 220%. Therefore the sample was tested as received.

TOXICITY TEST REPORT

Lytechinus pictus EPS 1/RM/27 Page 1 of 4

Work Order :232585Sample Number :49863

SAMPLE IDENTIFICATION

Company :	Harris Industrial Testing Service Ltd.					
Location :	South Rawden NS	Date Collected :	2016-12-11			
Substance :	ALMA Produced Water	Time Collected :	12:00			
Sampling Method :	Grab	Date Received :	2016-12-14			
Sampled By :	Not provided	Time Received :	10:30			
Temp. on arrival :	5.0°C	Date Tested :	2016-12-15			
Sample Description :	Clear, colourless, mild odour.					
Test Method :	Fertilization Assay Using Echinoids (Sea Urchins and Sand Dollars). Environment Canada,					

Fertilization Assay Using Echinoids (Sea Urchins and Sand Dollars). Environment Canada, Conservation and Protection. Ottawa, Ontario. EPS 1/RM/27, 2nd ed. (February 2011).

TEST RESULTS							
Effect	Value	95% Confidence Limits	Statistical Method				
IC25 (Fertilization)	44.3%	26.0-75.1	Linear Interpolation (CETIS) a				
The results reported relate only to the sample tested.							
COPPER (AS COPPER SULPHATE) REFERENCE TOXICANT DATA							

Date Tested :	2016-12-15	Statistical Method :	Non-Linear Regression* (CETIS) ^a				
Gamete Batch :	Ur16-12-03	Historical Mean IC25 :	102 μg/L				
Test Duration :	20 minutes	Warning Limits (± 2SD) :	32 - 324 μg/L				
IC25 Fertilization :	80 μg/L	Analyst(s) :	DK, RD, MC				
95% Confidence Limits :	69 - 91 μg/L						
The reference toxicant test was performed under the same experimental conditions as those used with the test sample.							

TEST CONDITIONS

Test Vessel :	20 mL glass scintillation vial	Control/Dilution Water ¹ :	Artificial Sea Water
Volume per Replicate :	10 mL	Sperm Exposure Time ² :	20 min
Number of Replicates :	4 per treatment	Egg Exposure Time :	10 min
Depth of Test Solution :	Approx. 3 cm	Total Duration of Test :	20 min
Sperm Density :	40000000 per vessel	pH Adjustment :	None
Sperm : Egg Ratio :	20000:1	Sample Filtration :	None
Males Used to Pool Sperm :	6	Test Aeration :	None
Females Used to Pool Eggs :	3	Test Method Deviation(s):	Yes (see 'Comments')

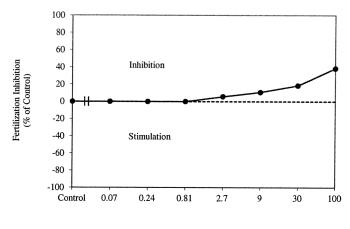
10 min exposure, continued for an additional 10 min after addition of eggs

COMMENTS

Noted Deviation(s): Testing was not started within 3 days of sample collection, as required by the test method. Testing was conducted with the client's consent.

*Binomial weighting (CETIS)^a was applied.

•All test validity criteria as specified in the test method cited above were satisfied.



TOXICITY TEST REPORT Lytechinus pictus EPS 1/RM/27

EPS 1/RM/27 Page 2 of 4

Work Order : Sample Number : 232585 49863

Sea Urchin Fertilization Inhibition

Concentration (%)

TEST ORGANISM

Adult Test Organism :Lytechinus pictusAdult Organism Source :Marinus ScientificSource Location :Garden Grove CA USADate Received :2016-05-04Holding Water :Artificial Sea WaterHolding Temperature :12 - 15 °C

Environment Canada, 1999.^c

Reference :

Holding Salinity : Holding Vessel : Adult Mortality Rate : Life Stage Tested : Gamete Batch Tested : 34 ± 2 ‰ Glass aquaria 0% (previous 7 days) Gamete (sperm/egg) Ur16-12-03

REFERENCES

- ^a CETIS, © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, McKinleyville, Calif. 95519[Program on disk and printed User's Guide].
- ^cEnvironment Canada. "Recommended Procedure for the Importation of Test Organisms for Sublethal Toxicity Testing", Unpublished Report, September 1999, 21 p. Method Development and Applications Section, Environmental Technol. Centre, Ottawa, ON (1999).
- ^eEnvironment Canada. 2001. Revised Procedures for Adjusting Salinity of Effluent Samples for Marine Sublethal Toxicity Testing Conducted under Environmental Effects Monitoring (EEM) Programs. Method Development and Applications Section, Environmental Technology Centre, December 2001.

Date: 017-01-18

Approved By :

Lytechinus pictus EPS 1/RM/27 Page 3 of 4

Work Order :232585Sample Number :49863

FERTILIZATION DATA

Test Conducted By : DK/RD Enumerated By : SEW

Concentration (%)	Replicate	Fertilized	Unfertilized	% Fertilized	Treatment Mean Fertilization (%)	Standard Deviation
Control	А	89	11	89	92.75	2.63
	В	93	7	93		
	С	94	6	94		
	D	95	5	95		
Blank	А	0	100	0	0	0.00
	В	0	100	0		
	С	0	100	0		
	D	0	100	0		
0.07	Α	90	10	90	92.75	2.63
	В	91	9	91		
	С	95	5	95		
	D	95	5	95		
0.24	А	90	10	90	92.75	3.20
	В	90	10	90		
	С	96	4	96		
	D	95	5	95		
0.81	А	95	5	95	92.75	2.87
	В	92	8	92		
	С	89	11	89		
	D	95	5	95		
2.7	А	89	11	89	87.5	2.38
	В	86	14	86		
	С	90	10	90		
	D	85	15	85		
9	А	82	18	82	82.75	0.96
	В	84	16	84		
	C	82	18	82		
	D	83	17	83		
30	А	76	24	76	75.5	5.32
	В	69	31	69		
	С	82	18	82		
	D	75	25	75		
100	А	68	32	68	57	11.02
	В	44	56	44		
	С	64	36	64		
	D	52	48	52		

"-" = not counted/not required

NOTES :

•No organisms or gametes exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

•Gamete viability test was performed prior to pooling of test gametes.

•A pre-test was not required.

•Preserved eggs were stored for 14 days prior to enumeration.

•No outlying data points were detected according to Grubbs Test (CETIS)^a

Data Reviewed By :____ Date :_____7-01-17-

Work Order :232585Sample Number :49863

TOXICITY TEST REPORT

Lytechinus pictus EPS 1/RM/27 Page 4 of 4

INITIAL WATER CHEMISTRY (100% SAMPLE)

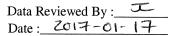
	Temp.(°C)	рН	Dissolved O ₂ (mg/L)	O ₂ Sat. (%)*	Salinity (‰)	Pre-aeration Time (h) ³
Initial Chemistry:	21.0	6.7	8.0	96	10	_
Chemistry after Salinity Adjustment :	20.0	6.8	7.4	100	30	_
Chemistry after Pre-Aeration :	_	_	_	-	-	0:00

SALINITY ADJUSTMENT

Method :	Direct Salt Addition	Volume Adjusted :	500 mL
Salt Added :	Instant Ocean TM	Amount of Salt Added	:11 g
Date Adjusted :	2016-12-14	Aging Time :	~18 hours
Aging Conditions :	Sealed, complete darkness, minimal air space	Aging Temperature :	4±2°C

Reference :

Environment Canada, 2001.^e


EXPOSURE CONCENTRATIONS WATER CHEMISTRY

Concentration (%)	Temp.(°C)	рН	Dissolved O ₂ (mg/L)	O ₂ Sat. (%)*	Salinity (‰)
Control	20.0	8.2	7.5	100	30
Blank	20.0	8.2	7.5	100	30
0.07	20.0	8.2	7.5	100	30
0.24	20.0	-	_		_
0.81	20.0	-	-	_	-
2.7	20.0	_	_		_
9	20.0	8.0	7.5	100	30
30	20.0	_	_	_	_
100	20.0	7.1	7.1	94	30

* % saturation, adjusted for temperature and barometric pressure

"-" not required/not measured

³ at <100 bubbles/min

Work Order : 232585 Sample Number :

49863

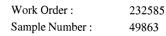
SAMPLE IDENTIFICATION								
Company :	Harris Industrial Testing Service	td. Time Collecte	ed :	12:00				
Location :	South Rawden NS	Date Collected	d :	2016-12-11				
Substance :	ALMA Produced Water	Sample Volur	ne :	1 x 1 L jar				
Sampling Method :	Grab	Date Received	1:	2016-12-14				
Sampled By :	Not provided	Date Tested :		2016-12-15				
Sample Description :	Clear, colourless, mild odour.	Temp. on arri	val :	5.0°C				
Test Method :	Toxicity Test Using Luminescen deviation(s) as noted below.	Bacteria, Protocol EPS 1/RM/24, E	nviror	nment Canada, 1992, with				
	TI	ST RESULTS						
Test Endpoint	Value	95% Confidence Limits	(Calculation Method				
15 minute IC50	3.94%	3.58-4.33		ast Square Regression				
The results reported relate only to the sample tested.								

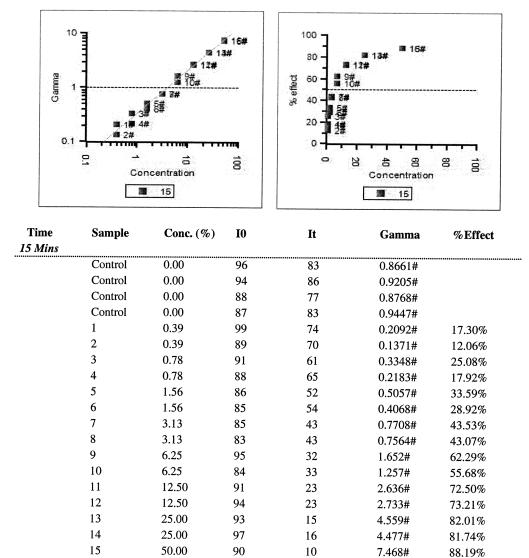
REFERENCE TOXICANT DATA

Reagent Batch :	15K4119A	15 minute IC50 :	0.71 mg/L
Expiry Date :	10/2017	95% Confidence Limits :	0.57-0.89 mg/L
Date Tested (yyyy-mm-dd):	2016-12-01	Historical Mean IC50 :	0.83 mg/L
Reference Substance :	Zinc (as zinc sulphate)	Warning Limits (± 2SD) :	0.64-1.08 mg/L
Statistical Method :	Least Square Regression	Analyst(s):	AW

CONDITIONS OF ACUTE MICROTOX TEST

Test Organism :	Vibrio fischeri	Test Initiation Time :	10:55
Reagent Batch :	15K4119A	Observation Time(s) :	15 minutes
Date Reagent Received :	2016-05-17	Sample Pre-aeration/Aeration	n : None
Reagent Holding Temperature :	-24 °C	Sample pH :	6.5
Analyzer Model Number :	M500	pH Adjustment :	None
Test Well Temperature :	15.0 ± 0.3 °C	Salinity Adjustment :	Yes
Highest Concentration Tested :	50 %	Final Salinity :	≥2% NaCl
Number of Controls :	2	Dilution Water :	AquaTox Diluent
Number of Concentrations Tested :	8	Sample Storage :	4±2 °C
Number of Replicates :	2	Colour Correction :	None
Appearance of Test Solutions :	No changes noted.	Analyst(s):	CN
		Test Method Deviation(s) :	Yes (see 'Comments')


Noted Deviation(s): Testing was not started within 72 hours of sampling, as required by the test method. Testing was conducted with the client's consent.


01-18 Date: _ yyyy-mm-dd

Approved by: Project Manager

TOXICITY TEST REPORT MICROTOX® EPS 1/RM/24 Page 2 of 2

Statistics:

Data: 15 Mins

16

EC50 Concentration: 3.940% (95% Confidence Range: 3.583 to 4.333) 95% Confidence Factor: 1.100 Estimating Equation: LOG C = 1.234 x LOG G +0.5955 Correction Factor: 0.9020 Slope: 0.8015 Coeff of Determination (R^2): 0.9892

50.00

94

10

7.715#

- included, * - invalid

88.53%

Shipping Address: AquaTox Testing & Consulting Inc. B-11 Nicholas Beaver Road Puslinch, Ontario Canada NOB 2J0 Voice: (519) 763-4412 Fax: (519) 763-4419	INDUSTICIA	SO. RAUNO	NS BONIZO		Phone: 902752-0232	Fax: 902 757 - 2839	Contact: affect HARKIS	Analyses Requested Sample Method and Volume	And the second secon	49863 5.0 1 1 1 1 1 1 1 1 1					Please list any special requests or instructions: PERENTSSION TO TEST 1F SAM PLE, 15 2 DAYS 620	/ MUV
AQUATOX ANATOMENTIC 232585	P.O. Number: ALMA	Field Sampler Name (print):	Signature:	Affiliation: ZXYON MOBIL	Sample Storage (prior to shipping):	d by:	Date/Time Shipped: DEC.12/16	Sample Identification	Time Collected (yyyy-mm-dd) 24 hr clock) Sample Name	2016-12-11 12:00 ALMA PRODUCED WATER	Crs per lake (2)				For Lab Use Only 72 Received By: 2016-12-14	Time: /O'3.O Storage Location: Storage Temp. (°C)

Standard Marine COC with microtox rev 1 2016 09 01 TC

Work Order : 232566 Sample Number : 49842

	SAMPLE	IDENTIFICATION	
Company : Ha	urris Industrial Testing Service L	td. Time Collect	ted : 12:40
	outh Rawden NS	Date Collect	ed 2016-12-07
	outh Venture Produce Water	Sample Volu	ume: 1 x 1 L jar
	ot provided	Date Receive	
	ldy (Exxon Mobil)	Date Tested	
Sample Description : Cle	ear, colourless, odourless.	Temp. on arr	rival : 10.0°C
Test Method : To	xicity Test Using Luminescent	Bacteria, Protocol EPS 1/RM/24,	Environment Canada, 1992.
	TES	ST RESULTS	
Test Endpoint	Value	95% Confidence Limits	Calculation Method
15 minute IC50	19.2%	17.9-20.5	Least Square Regression
	The results reported	relate only to the sample tested.	
	REFERENC	E TOXICANT DATA	
Reagent Batch :	15K4119A	15 minute IC50 :	0.71 mg/L
Expiry Date :	10/2017	95% Confidence Lin	mits : 0.57-0.89 mg/L
Date Tested (yyyy-mm-	dd): 2016-12-01	Historical Mean IC5	50 : 0.83 mg/L
Reference Substance :	Zinc (as zinc sul	phate) Warning Limits (± 2	2SD): 0.64-1.08 mg/L
Statistical Method :	Least Square Rea	gression Analyst(s):	AW
	CONDITIONS OF	ACUTE MICROTOX TEST	
Test Organism :	Vibrio fischeri	Test Initiation Time	
Reagent Batch :	15K4119A	Observation Time(s)	
Date Reagent Received		Sample Pre-aeration	
Reagent Holding Tempe		Sample pH :	6.9
Analyzer Model Numbe		pH Adjustment :	None
Test Well Temperature		Salinity Adjustment	: Yes
Highest Concentration 7	Γested : 90 %	Final Salinity :	≥2% NaCl
Number of Controls :	2	Dilution Water :	AquaTox Diluent
	m 1 (G 1 G	

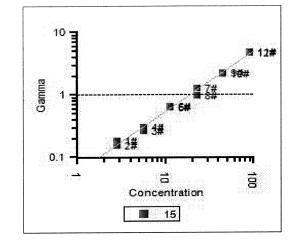
Number of Concentrations Tested : 6 2 Appearance of Test Solutions : No changes noted.

Colour Correction : None AW Analyst(s): Test Method Deviation(s) : None

4±2 °C

Number of Replicates :

Approved Project Manager


Sample Storage :


Accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA)

TOXICITY TEST REPORT MICROTOX® EPS 1/RM/24 Page 2 of 2

Work Order :232566Sample Number :49842

Time	Sample	Conc. (%)	10	It	Gamma	%Effect
15 Mins						
	Control	0.00	94	117	1.253#	
	Control	0.00	91	118	1.298#	
	Control	0.00	86	116	1.358#	
	Control	0.00	89	116	1.301#	
	1	2.81	90	99	0.1826#	15.44%
	2	2.81	90	101	0.1533#	13.29%
	3	5.63	77	80	0.2626#	20.80%
	4	5.63	88	89	0.2965#	22.87%
	5	11.25	89	71	0.6265#	38.52%
	6	11.25	93	74	0.6417#	39.09%
	7	22.50	95	55	1.244#	55.43%
	8	22.50	87	58	0.9721#	49.29%
	9	45.00	91	37	2.237#	69.10%
	10	45.00	90	37	2.151#	68.27%
	11	90.00	92	21	4.748#	82.60%
	12	90.00	93	21	4.674#	82.37%
					# - included,	* - invalid

Statistics:

Data: 15 Mins

EC50 Concentration: 19.18% (95% Confidence Range: 17.91 to 20.53) 95% Confidence Factor: 1.071 Estimating Equation: LOG C = 1.029 x LOG G +1.283 Correction Factor: 1.303 Slope: 0.9656 Coeff of Determination (R^2): 0.9935

TOXICITY TEST REPORT

Lytechinus pictus EPS 1/RM/27 Page 1 of 4

Work Order :232566Sample Number :49842

SAMPLE IDENTIFICATION

Company :	Harris Industrial Testing Service Ltd.		
Location :	South Rawden NS	Date Collected :	2016-12-07
Substance :	South Venture Produce Water	Time Collected :	12:40
Sampling Method :	Not provided	Date Received :	2016-12-09
Sampled By :	Eddy (Exxon Mobil)	Time Received :	10:00
Temp. on arrival :	10.0°C	Date Tested :	2016-12-09
Sample Description :	Clear, colourless, odourless.		
Test Method :	Fertilization Assay Using Echinoids (Sea Urchins and	Sand Dollars). Env	

Conservation and Protection. Ottawa, Ontario. EPS 1/RM/27, 2nd ed. (February 2011).

TEST RESULTS							
Value	95% Confidence Limits	Statistical Method					
>68.2%	-	-					
•		Value 95% Confidence Limits					

The results reported relate only to the sample tested.

COPPER (AS COPPER SULPHATE) REFERENCE TOXICANT DATA

Date Tested :	2016-12-09	Statistical Method :	Non-Linear Regression* (CETIS) ^a
Gamete Batch :	Ur16-12-02	Historical Mean IC25 :	108 μg/L
Test Duration :	20 minutes	Warning Limits (± 2SD) :	35 - 334 μg/L
IC25 Fertilization :	51 μg/L	Analyst(s) :	AS, RD, SEW
95% Confidence Limits :	47 - 54 μg/L		

The reference toxicant test was performed under the same experimental conditions as those used with the test sample.

TEST CONDITIONS

Test Vessel :	20 mL glass scintillation vial	Control/Dilution Water ¹ :	Artificial Sea Water
Volume per Replicate :	10 mL	Sperm Exposure Time ² :	20 min
Number of Replicates :	4 per treatment	Egg Exposure Time :	10 min
Depth of Test Solution :	Approx. 3 cm	Total Duration of Test :	20 min
Sperm Density :	40000000 per vessel	pH Adjustment :	None
Sperm : Egg Ratio :	20000:1	Sample Filtration :	None
Males Used to Pool Sperm :	4	Test Aeration :	None
Females Used to Pool Eggs :	4	Test Method Deviation(s):	None
¹ no additional chemicals			

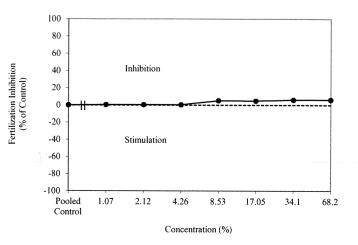
² 10 min exposure, continued for an additional 10 min after addition of eggs

COMMENTS

•Maximum effluent concentration tested was 68.2% due to the addition of Hypersaline Brine for salinity adjustment of the 100% sample.

•The test result is based on pooled Control and HSB Control data, as required by Environment Canada (2001)^e.

*Binomial weighting (CETIS)^a was applied.


•All test validity criteria as specified in the test method cited above were satisfied.

AOUAT

Lytechinus pictus EPS 1/RM/27 Page 2 of 4

Work Order : Sample Number : 232566 49842

Sea Urchin Fertilization Inhibition

TEST ORGANISM

Adult Test Organism : Adult Organism Source : Source Location : Date Received : Holding Water : Holding Temperature :	Marinus Scientific Garden Grove CA USA 2016-05-04 Artificial Sea Water	Holding Salinity : Holding Vessel : Adult Mortality R Life Stage Tested Gamete Batch Tes	late : :	34 ± 2 ‰ Glass aquaria 0% (previous 7 days) Gamete (sperm/egg) Ur16-12-02	
Reference :	Environment Canada, 1999. ^c				

REFERENCES

^a CETIS, © 2000-2013. V.1.8.7.17. Comprehensive Environmental Toxicity Information System. Tidepool Scientific Software, McKinleyville, Calif. 95519[Program on disk and printed User's Guide].

^bGrubbs, F.E., 1969. Procedures for detecting outlying observations in samples. Technometrics, 11:1-21.

- ^cEnvironment Canada. "Recommended Procedure for the Importation of Test Organisms for Sublethal Toxicity Testing", Unpublished Report, September 1999, 21 p. Method Development and Applications Section, Environmental Technol. Centre, Ottawa, ON (1999).
- ^eEnvironment Canada. 2001. Revised Procedures for Adjusting Salinity of Effluent Samples for Marine Sublethal Toxicity Testing Conducted under Environmental Effects Monitoring (EEM) Programs. Method Development and Applications Section, Environmental Technology Centre, December 2001.

Date: 0017-01-05

vyy-mm-dd

16.1 Approved By : Project Manager

AQUATOX

Work Order : 232566

Sample Number : 49842

TOXICITY TEST REPORT

Lytechinus pictus EPS 1/RM/27 Page 3 of 4

FERTILIZATION DATA

Test Conducted By: RD/AS Enumerated By : SEW

Concentration (%)	Replicate	Fertilized	Unfertilized	% Fertilized	Treatment Mean Fertilization (%)	Standard Deviation
Control	A	96	4	96	95.25	0.96
	В	94	6	94		
	С	95	5	95		
	D	96	4	96		
HSB Control*	А	93	7	93	94.5	1.29
	В	94	6	94		
	С	95	5	95		
	D	96	4	96		
Blank	А	0	100	0	0	0.00
	В	0	100	0		
	С	0	100	0		
	D	0	100	0		
1.07	А	95	5	95	94.5	0.58
	В	94	6	94		
	С	94	6	94		
	D	95	5	95		
2.12	А	94	6	94	94.5	1.29
	В	93	7	93		
	С	95	5	95		
	D	96	4	96		
4.26	А	94	6	94	94.5	0.58
	В	94	6	94		
	С	95	5	95		
	D	95	5	95		
3.53	Α	87	13	87	90	2.45
	В	90	10	90		
	С	90	10	90		
	D	93	7	93		
17.05	А	88	12	88	90.25	1.71
	В	92	8	92		
	С	91	9	91		
	D	90	10	90		
34.1	А	88	12	88	89.25	0.96
	В	90	10	90		
	С	90	10	90		
	D	89	11	89		
58.2	Α	87	13	87	89	2.16
	В	92	. 8	92		
	С	89	11	89		
	D	88	12	88		

"-" = not counted/not required

NOTES :

•No organisms or gametes exhibiting unusual appearance, behaviour, or undergoing unusual treatment were used in the test.

•Gamete viability test was performed prior to pooling of test gametes.

•A pre-test was not required.

•Preserved eggs were stored for 10 days prior to enumeration.

*'HSB Control' is a control prepared by addition of Hypersaline Brine to reverse osmosis water, according to Environment Canada (2001)^e.

•No outlying data points were detected according to Grubbs Test ^b.

Data Reviewed By : ____ Date : ______ 7-01-04

AQUATOX

Work Order : 232566 Sample Number : 49842

TOXICITY TEST REPORT

Lytechinus pictus EPS 1/RM/27 Page 4 of 4

INITIAL WATE	R CHEMISTRY	(100% SAMPLE)
--------------	-------------	---------------

	Temp.(°C)	рН	Dissolved O ₂ (mg/L)	O ₂ Sat. (%)*	Salinity (‰)	Pre-aeration Time (h) ³
Initial Chemistry:	20.0	6.7	9.2	110	2	-
Chemistry after Salinity Adjustment :	20.0	7.0	7.4	102	30	_
Chemistry after Pre-Aeration:	20.0	7.6	7.3	97	30	0:20

SALINITY ADJUSTMENT

Method :	Hypersaline Brine (aged 228 days)	Volume Adjusted :	500 mL
Brine Salinity :	90 ‰	Amount of Brine Added :	159 mL
Date Adjusted :	2016-12-09	Aging Time :	Approx. 4 hours
Aging Conditions :	Sealed, complete darkness, minimal air space	Aging Temperature :	4±2°C

Reference : Salinity Adjustment Guidance Document. Environment Canada, revised December 2001^e.

EXPOSURE CONCENTRATIONS WATER CHEMISTRY

	Temp.(°C)	pН	-	O ₂ Sat. (%)*	Salinity (‰)	
Concentration (%)			(mg/L)			
Control	20.0	8.1	7.4	100	30	
HSB Control	20.0	7.9	6.5	87	30	
Blank	20.0	8.1	7.4	100	30	
1.07	20.0	8.1	7.5	100	30	
2.12	20.0	8.1	7.5	99	30	
4.26	20.0	8.1	7.5	99	30	
8.53	20.0	8.1	7.5	99	30	
17.05	20.0	8.0	7.4	98	30	
34.1	20.0	7.9	7.4	98	30	
68.2	20.0	7.6	7.3	97	30	

* % saturation, adjusted for temperature and barometric pressure

"-" not required/not measured

 3 at <100 bubbles/min

Data Reviewed By : \mathcal{T} Date : 2017 - 01 - 04

January 6, 2017

Exxon Mobil 1701 Hollis St. Halifax NS B3J 3M8

Attn: Megan Tuttle

Re: Offshore Toxicity Testing

Dear Megan,

The following is a brief discussion of the aquatic toxicity test results of Thebaud Produced Water to Threespine stickleback, Microtox and Echinoid Fertilization.

1.0 Introduction

The Thebaud platform was sampled on November 28, 2016 by B. Huder at 1300 hours and the sample was picked-up by HITS lab staff at the Heliport on November 28, 2016. A sub-sample was taken from the original sample (HITS Lab ID # 16-600), delivered to the Purolator Depot in Dartmouth and shipped by air to AquaTox Testing and Consulting Inc. in Guelph, ON, on November 29, 2016, received on November 30, 2016.

2.0 Methods

Threespine stickleback:

The Threespine stickleback test (TSS) was conducted at HITS lab according to Environment Canada's test protocol EPS 1/RM/10 July 1990 with 2000 Amendments within the 5 days allowed between sampling and test commencement.

HITS Lab Method "Tox 9B" is held on file in the lab. This method describes but is not limited to the following:

- collection and acclimation of marine fish;
- preparation of reference toxicant;
- conduct of testing.

The sample salinity measured at HITS was 0.67% when measured via routine procedure (*i.e.* conductivity meter). When measured with a refractometer at HITS, the salinity was 9%. Both values are below the historical threshold for testing with a marine fish species (10‰).

A deviation occurred in the loading density. This was exceeded due to the volume of sample received and the size of the organisms.

Microtox:

The Microtox test was conducted at Aquatox according to the protocol EPS 1/RM/24, Environment Canada (1992) within the maximum 3-day holding time allowed.

Echinoid Fertilization

The Echinoid Fertilization test was conducted at Aquatox according to the protocol EPS 1/RM/27, 2nd Edition (February 2011) within the maximum 3-day holding time allowed.

3.0 Results

See Table 1 below for results from Nov. 2006 to November 2016.

Date	LC5	TSS) (95% C.L.)	N IC50	Aicrotox (95% C.L.)		Echinoid rtilization (95% C.L.)	Sal. (‰)
Jan. 11 2007	11.7%	(9.41 - 14.5)	3.68%	(3.61 - 3.76)	2.58%	(2.09 - 3.32)	30
Aug. 13 2007	<6.25%)	0.53%	(0.49 - 0.58)	6.1%	(5.7 - 6.4)	20
Nov. 27 2007	7.11%	(6.55 - 7.71)	1.19%	(0.98 - 1.44)	0.11%	(0.07 - 0.14)	82
Nov. 24 2008	7.7%	(6.46 - 9.17)	1.99%	(1.88 - 2.10)	3.0%	(1.1 - 5.0)	38
Jul. 14 2009	8.84%	(6.25 - 12.5)	1.72%	(1.61 - 1.84)	4.02%	(3.53 – 4.22)	34
Aug. 10 2010	8.85%	(6.25 – 12.3)	1.70%	(1.50 - 1.93)	0.83%	(0.13 – 1.38)	55
Oct. 12 2011	8.25%	(7.23 - 9.41)	4.66%	(3.59 - 6.05)	0.61%	(0.44 - 0.91)	165
Oct. 21 2012	4.42%	(3.32 – 5.89)	2.86%	(2.50 - 3.28)	0.44%	(0.39 - 0.50)	152
Aug. 19 2013	7.66%	(5.82 - 10.07)	2.97%	(2.69 - 3.29)	0.04%	(0.03 - 0.06)	154
Oct. 21 2014	6.10%	(4.44 - 8.58)	2.79%	(2.18 – 3.56)	0.21%	(0.17 - 0.25)	135
Sept. 22 2015	8.84%	(6.25 - 12.5)	3.02%	(2.68 - 3.41)	0.72%	(0.63 - 0.83)	76
Nov. 28 2016	17.7%	(12.5 – 25.0)	1.47%	(1.29 – 1.66)	15.3.%	(11.4 – 19.2)	0.67(9)

|--|

"The Offshore Waste Treatment Guidelines" August 2002 do not have pass/fail criteria, however most effluent discharge regulations stipulate that if an effluent has greater than 50% mortality at the 100% concentration it fails. Based on this, the Thebaud Produced Water would be considered toxic to TSS. There are no pass/fail criteria available for Microtox and Echinoid fertilization toxicity tests.

4.0 Discussion

Normal seawater salinity values range from 28 - 32%. The salinity value for this platform (0.67‰) is lower than normal values.

Threespine Stickleback

There was 100% mortality in each of the 100, 50 and 25% concentrations. When the sample was diluted to the 50% concentration, the subsequent salinity at that concentration was already within the range specified as suitable for Threespine stickleback testing (\geq 10‰). Since 100% mortality occurred in the 50% concentration as well as in the 25% concentration, and because Threespine stickleback have not historically demonstrated increased mortality due to low salinity levels (<5‰), mortality was not likely due to low salinity. Rather, toxicity from petroleum hydrocarbons was a more probable cause of this mortality. The toxicity results for the Thebaud platform are statistically different between 2015 and 2016.

Echinoid Fertilization

In the Echinoid Fertilization test the salinity for all concentrations was adjusted to 28‰. Toxicity (*i.e.* fertilization inhibition) occurred at the 15.3% concentration. Based on these results, inhibition is likely the result of toxicity from petroleum hydrocarbons. All validity criteria for this test were met.

The toxicity results for this platform are statistically different between 2015 and 2016.

Microtox

The salinity for all concentrations was adjusted to $\geq 20\%$. Since the IC50 value was 1.47%, inhibition was likely a result of toxicity from petroleum hydrocarbons.

The toxicity results for this platform are statistically different between 2015 and 2016.

The statistical method used to compare LC50, IC50 and IC25 values was the pairwise comparison test delineated in Sprague & Fogels (1977).

If you have any questions, please do not hesitate to contact me at your earliest convenience.

Marks

Karen Harris Assistant Lab Manager

January 10, 2016

Exxon Mobil 1701 Hollis St. Halifax NS B3J 3M8

Attn: Megan Tuttle

Re: Offshore Toxicity Testing

Dear Megan,

The following is a brief discussion of the aquatic toxicity test results of Venture Produced Water to Threespine stickleback, Microtox and Echinoid Fertilization.

1.0 Introduction

The Venture platform was sampled on December 7, 2016 by B. LeBlanc at 1145 hours and the sample was picked-up by HITS lab staff at the Heliport on December 8, 2016. A sub-sample was taken from the original sample (HITS Lab ID # 16-627-A), delivered to the Purolator Depot in Dartmouth and shipped by air to AquaTox Testing and Consulting Inc. in Guelph, ON, on December 8, 2016, received on December 9, 2016.

2.0 Methods

Threespine stickleback

The Threespine stickleback test (TSS) was conducted at HITS lab according to Environment Canada's test protocol EPS 1/RM/10 July 1990 with 2000 Amendments within the 5 days allowed between sampling and test commencement.

HITS Lab Method "Tox 9B" is held on file in the lab. This method describes but is not limited to the following:

- collection and acclimation of marine fish;
- preparation of reference toxicant;
- conduct of testing.

The sample salinity measured at HITS was 250‰.

A deviation occurred in the loading density. This was exceeded due to the low volume of sample received and the relatively large size of the available test organisms.

Microtox

The Microtox test was conducted at AquaTox according to the protocol EPS 1/RM/24, Environment Canada (1992) within the maximum 3-day holding time allowed.

Echinoid Fertilization

The Echinoid Fertilization test was conducted at AquaTox according to the protocol EPS 1/RM/27, 2nd Edition (February 2011) within the maximum 3-day holding time allowed.

Deviation: The salinity of the 100% sample as measured at Aquatox was 220‰. Salinity of the 100%, 30%, 9% and 2.7% exposure concentrations exceeded the maximum of 32‰ allowed by the test method.

3.0 Results

See Table 1 below for results from November 2006 to December 2016 (sampling was not conducted 2012 and 2013).

Data	TSS		Microtox		Echinoid Fertilization		Sal.
Date	LC50	(95% C.L.)	IC50	(95% C.L.)	IC25	(95% C.L.)	ppt
Nov. 2006	4.4%						>150
Oct. 2007	8.25%		13.0%	(12.8 - 13.1)	0.69%	(0.47 - 1.0)	210
Oct. 2008	5.66%	(3.2 - 10.0)	1.19%	(0.98 - 1.44)	0.11%	(0.07 - 0.14)	240
July 14 2009	5.66%	(3.2 - 10.0)	16.8%	(16.6 - 17.0)	0.124%	(0.01 - 0.23)	190
July 5 2010	5%	(4.1 - 6.3)	14.2%	(13.1 – 15.3)	0.06%	(0.02 - 0.13)	185
Nov. 14 2011	4.13%	(3.62 - 4.71)	7.45%	(5.79 - 10.3)	0.18%	(0.15 - 0.21)	207
Oct. 21 2014	6.51%	(4.84 - 8.83)	7.72%	(6.82 - 8.74)	0.07%	(0.06 - 0.09)	187
Sept. 27 2015	8.84%	(6.25 - 12.5)	14.6%	(13.7 – 15.6)	0.31%	(0.26 - 0.37)	218
Dec. 7 2016	4.4%	(3.1 - 6.3)	2.20%	(1.75 - 2.77)	0.12%	(0.10 - 0.14)	250

Table 1. Venture Toxicity Results (2007 - 2016).

"The Offshore Waste Treatment Guidelines" August 2002 do not have pass/fail criteria, however most effluent discharge regulations stipulate that if and effluent has greater than 50% mortality at the 100% concentration it fails. Based on this, the Venture Produced Water would be considered toxic to TSS. There are no pass/fail criteria available for Microtox and Echinoid fertilization toxicity tests.

4.0 Discussion

Normal seawater salinity values range from 28 - 32%. The salinity value for this platform (250%) is much higher than normal seawater.

Threespine Stickleback

HITS tested one additional concentration in the TSS LC50 test at the lower end (3.13%) in order to better assess the sample's toxicity at lower salinity levels. Salinity was slightly above the normal range even after the sample was diluted to the 3.13% concentration (36.7‰). Full mortality occurred in the 6.25% concentration (40‰), but there was no mortality in the 3.13% concentration. From these results, mortality may have occurred at the higher concentrations due to high salinity, toxicity from petroleum hydrocarbons, or a combination of both. The toxicity results for the Venture platform are statistically different between 2015 and 2016.

Echinoid Fertilization

The salinity level of this sample fell within the normal range at the 0.81% dilution concentration. Test toxicity (*i.e.* fertilization inhibition) commenced at the statistically estimated concentration of 0.12%. From this result, inhibition likely occurred due to toxicity from petroleum hydrocarbons rather than high salinity alone.

All validity criteria for this test were met.

The toxicity results for this platform are statistically different between 2015 and 2016.

Microtox

Based on the salinity values reported in the above Echinoid Fertilization test, it can be extrapolated that normal salinity levels were reached at or below the 1.56% concentration. Significant inhibition occurred in the Microtox test at the statistically estimated concentration of 2.2%. Therefore, it would appear that significant inhibition occurred above the threshold at which the salinity was diluted to a normal level. From these results, inhibition likely occurred at the higher concentrations due to high salinity, toxicity from petroleum hydrocarbons, or a combination of both.

The toxicity results for this platform are statistically different between 2015 and 2016.

If you have any questions, please do not hesitate to contact me at your earliest convenience.

Karen Marks Assistant Lab Manager

January 19, 2017

Exxon Mobil 1701 Hollis St. Halifax NS B3J 3M8

Attn: Megan Tuttle

Re: Offshore Toxicity Testing

Dear Megan,

The following is a brief discussion of the aquatic toxicity test results of Alma Produced Water to Threespine stickleback, Microtox and Echinoid Fertilization.

1.0 Introduction

The Alma platform was sampled on December 11, 2016 by B. LeBlanc at 1200 hours and the sample was picked-up by HITS lab staff at the Heliport on December 12, 2016. A sub-sample was taken from the original sample (HITS Lab ID # 16-630), delivered to the Purolator Depot in Dartmouth and shipped by air to AquaTox Testing and Consulting Inc. in Guelph, ON, on December 12, 2016, received on December 14, 2016. The sample was misrouted which resulted in a 1-day delay however this did not affect the testing schedule at AquaTox which was booked for December 15, 2016.

2.0 Methods

Threespine stickleback:

The Threespine stickleback test (TSS) was conducted at HITS lab according to Environment Canada's test protocol EPS 1/RM/10 July 1990 with 2000 Amendments within the 5 days allowed between sampling and test commencement.

HITS Lab Method "Tox 9B" is held on file in the lab. This method describes but is not limited to the following:

- collection and acclimation of marine fish;
- preparation of reference toxicant;
- conduct of testing.

The sample salinity measured at HITS was 8.7‰ when measured at HITS. This value is below the historical threshold for testing with a marine fish species (10‰).

A deviation occurred in the loading density. This was exceeded due to the low volume of sample received and the relatively large size of the available test organisms.

Microtox:

The Microtox test was conducted at AquaTox according to the protocol EPS 1/RM/24, Environment Canada (1992). A deviation occurred in the sample holding time for Microtox testing. The maximum 3-day time period between sampling and testing was exceeded.

Echinoid Fertilization:

The Echinoid Fertilization test was conducted at AquaTox according to the protocol EPS 1/RM/27, 2nd Edition (February 2011). A deviation occurred in the sample holding time for Echinoid fertilization testing. The maximum 3-day time period between sampling and testing was exceeded.

3.0 Results

See Table 1 below for results from January 2008 to December 2016.

Date	LC5	TSS) (95% C.L.)	IC50	Microtox (95% C.L.)		Cchinoid rtilization (95% C.L.)	Sal. (‰)
Jan. 2008	33.0%	(28.9 – 37.6)	1.44%	(1.27 – 1.64)	0.54%	(0.38 - 0.70)	6
Sept. 28 2008	30.8%	(35.8 – 36.7)	2.32%	(2.22 - 2.42)	1.06%	(0.19 - 1.54)	4.5
Oct. 29 2009	26.8%	(21.6 – 33.2)	3.21%	(3.01 – 3.42)	40.4%	(27.0 - 46.7)	5.0
Oct. 23 2010	35.4%	(25 - 50)	2.44%	(2.34 - 2.54)	48.4%	(42.3 – 52.9)	8.5
Oct. 17 2011	35.4%	(25 - 50)	2.36%	(2.19 – 2.55)	49.9%	(33.5 – 66.9)	8.7
Aug. 19 2012	27.7%	(20.6 - 37.8)	3.50%	(3.25 - 3.77)	59.4%	(40.1 – 76.8)	7.4
Oct. 14 2013	35.1%	(25.0 - 50.0)	6.84%	(6.35 – 7.36)	18.1%	(14.7 – 21.6)	8.6
Oct. 26 2014	33.0%	(28.9 – 37.6)	2.38%	(2.26 - 2.51)	99.2%	(88.3 – 110)	12.6
Sept. 27 2015	35.4%	(25 - 50)	2.48%	(2.27 - 2.71)	56.3%	(51.0 – 61.4)	19.3
Dec. 12 2016	50.0%	(40.2 - 62.3)	3.94%	(3.58 - 4.33)	44.3%	(26.0 - 75.1)	8.7

Table 1. Alma Toxicity Results (2007 - 2016).

"The Offshore Waste Treatment Guidelines" August 2002 do not have pass/fail criteria, however most effluent discharge regulations stipulate that if an effluent has greater than 50% mortality at the 100% concentration it fails. Based on this, the Alma Produced Water would be considered toxic to TSS. There are no pass/fail criteria available for Microtox and Echinoid fertilization toxicity tests.

4.0 Discussion

Normal seawater salinity values range from 28 - 32%. The salinity value for this platform (8.7%) is lower than normal values.

Threespine Stickleback

There was 100% mortality in the 100% concentration and 50% mortality in the 50% concentration. When the sample was diluted to the 50% concentration, the subsequent salinity at that concentration was already within the range specified as suitable for Threespine stickleback testing (\geq 10‰). Since mortality occurred in the 50% concentration, and because Threespine stickleback have not historically demonstrated increased mortality due to low salinity levels (<5‰), mortality was not likely due to low salinity. Rather, toxicity from petroleum hydrocarbons was a more probable cause of this mortality.

The toxicity results for the Alma platform are not statistically different between 2015 and 2016.

Echinoid Fertilization

In the Echinoid Fertilization test the salinity for all concentrations was adjusted to 30‰. Toxicity (*i.e.* fertilization inhibition - IC25) occurred at the 44.3% concentration. Based on these results, inhibition is likely the result of toxicity from petroleum hydrocarbons. All validity criteria for this test were met.

The toxicity results for this platform are not statistically different between 2015 and 2016.

Microtox

The salinity for all concentrations was adjusted to $\geq 20\%$. Since the IC50 value was 3.94%, inhibition was likely a result of toxicity from petroleum hydrocarbons.

The toxicity results for this platform are statistically different between 2015 and 2016.

The statistical method used to compare LC50, IC50 and IC25 values was the pairwise comparison test delineated in Sprague & Fogels (1977).

If you have any questions, please do not hesitate to contact me at your earliest convenience.

Karen Harris Assistant Lab Manager

January 10, 2017

Exxon Mobil 1701 Hollis St. Halifax NS B3J 3M8

Attn: Megan Tuttle

Re: Offshore Toxicity Testing

Dear Megan,

The following is a brief discussion of the aquatic toxicity test results of South Venture Produced Water to Threespine stickleback, Microtox and Echinoid Fertilization.

1.0 Introduction

The South Venture platform was sampled on December 7, 2016 by E. Hall at 1240 hours and the sample was picked-up by HITS lab staff at the Heliport on December 8, 2016. A sub-sample was taken from the original sample (HITS Lab ID # 16-627-B), delivered to the Purolator Depot in Dartmouth and shipped by air to AquaTox Testing and Consulting Inc. in Guelph, ON, on December 8, 2016, received on December 9, 2016.

2.0 Methods

Threespine stickleback

The Threespine stickleback test (TSS) was conducted at HITS lab according to Environment Canada's test protocol EPS 1/RM/10 July 1990 with 2000 Amendments within the 5 days allowed between sampling and test commencement.

HITS Lab Method "Tox 9B" is held on file in the lab. This method describes but is not limited to the following:

- collection and acclimation of marine fish;
- preparation of reference toxicant;
- conduct of testing.

The sample salinity measured at HITS was 0.7‰. This value is below the historical threshold for testing with a marine fish species (10‰).

A deviation occurred in the loading density. This was exceeded due to the low volume of sample received and the relatively large size of the available test organisms.

Microtox

The Microtox test was conducted at AquaTox according to the protocol EPS 1/RM/24, Environment Canada (1992) within the maximum 3-day holding time allowed.

Echinoid Fertilization

The Echinoid Fertilization test was conducted at AquaTox according to the protocol EPS 1/RM/27, 2nd Edition (February 2011) within the maximum 3-day holding time allowed.

3.0 Results

See Table 1 below for results from December 2007 to December 2016.

Data	TSS		Ν	Microtox		Echinoid Fertilization	
Date	LC50	(95% C.L.)	IC50	(95% C.L.)	IC25	(95% C.L.)	(ppt)
Dec. 15 2007	17.8%	(12.5 - 25.0)	12.2%	(10.1 - 14.7)	0.37%	(0.15 - 0.51)	89
Nov. 21 2008	7.69%	(6.45 - 9.17)	18.0%	(16.3 - 20.0)	0.50%	(0.42 - 0.59)	135
Nov. 8 2009	17.6%	(12.5 - 25.0)	29.7%	(27.2 - 32.5)	4.15%	(3.28 - 4.41)	60
Nov. 4 2010	8.84%	(6.25 - 12.5)	11.6%	(10.1 – 13.3)	0.64%	(0.37 – 1.06)	130
Oct. 15 2011	8.84%	(6.25 - 12.5)	13.4%	(11.5 - 15.6)	1.27%	(0.92 - 1.69)	170
Aug. 18 2013	42.1%		15.7%	(14.0 - 17.6)	0.39%	(0.09 - 0.72)	12
	(Untrin	med results)					12
Aug. 18 2013	45.3%	(34.7 - 59.1)					
	(Trimmed results)						
Oct. 22 2014	52.1%	(38.7 – 70.6)	12.2%	(10.8 - 13.7)	>100%	-	3
Oct. 19 2015	70.7%	(50 - 100)	>50%	-	>100%	-	1.46
Dec. 07 2016	66.0%	(57.8 - 75.3)	19.2%	(17.9 - 20.5)	>68.2%	-	0.7

Table 1. South Venture Toxicity Results (2007 - 2016).

"The Offshore Waste Treatment Guidelines" August 2002 do not have pass/fail criteria, however most effluent discharge regulations stipulate that if an effluent has greater than 50% mortality at the 100% concentration it fails. Based on this, the South Venture Produced Water would be considered toxic to TSS. There are no pass/fail criteria available for Microtox and Echinoid fertilization toxicity tests.

4.0 Discussion

Normal seawater salinity values range from 28 - 32%. The salinity value for this platform (0.7‰) is lower than normal.

Threespine Stickleback

There was 100% mortality in the 100% concentration and only 10% mortality at the 50% concentration. When the sample was diluted to the 50% concentration, the subsequent salinity at that concentration was already within the range specified as suitable for Threespine stickleback testing ($\geq 10\%$). Threespine stickleback have not historically demonstrated increased mortality due to low salinity levels (<5‰) but these results do not conclusively indicate that mortality was not due to low salinity levels. Toxicity from petroleum hydrocarbons was a more probable cause of this mortality, however toxicity may have also been caused by a combination of low salinity and petroleum hydrocarbons. The toxicity results for the South Venture platform are not statistically different between 2015 and 2016.

Echinoid Fertilization

In the Echinoid Fertilization test the salinity for all concentrations was adjusted to 30%. The maximum concentration tested was 68.2% due to the need for the addition of Hypersaline Brine to the effluent in order to adjust the salinity. Toxicity (*i.e.* fertilization inhibition) did not occur within the range of tested concentrations, meaning that the effluent was not toxic at or below 68.2%.

All validity criteria for this test were met.

Statistical comparison of the 2015 and 2016 results was not performed due to the absence of calculable IC25 values.

Microtox

The salinity for all concentrations was adjusted to $\geq 20\%$. Since the IC50 value was 19.2%, inhibition was likely a result of toxicity from petroleum hydrocarbons.

Statistical comparison of the 2015 and 2016 results was not performed due to the absence of calculable IC50 values for the 2015 results. The results from 2016 did however appear to be more similar to results from 2007 - 2014 than the results from 2015.

The statistical method used to compare LC50, IC50 and IC25 values was the pairwise comparison test delineated in Sprague & Fogels (1977).

If you have any questions, please do not hesitate to contact me at your earliest convenience.

Karen Harris Assistant Lab Manager

Appendix for Section 3

DATE	TIME	PLUME COLOR	SIZE
Jan 1-2016	08:00 HRS	Clear	Normal
Jan 1-2016	18:00 HRS	Clear	Normal
Jan 2-2016	08:00 HRS	Clear	Normal
Jan 2-2016	18:00 HRS	Clear	Normal
Jan 3-2016	08:00 HRS	Clear	Normal
Jan 3-2016	18:00 HRS	Clear	Normal
Jan 4-2016	08:00 HRS	Clear	Normal
Jan 4-2016	18:00 HRS	Clear	Normal
Jan 5-2016	08:00 HRS	Clear	Normal
Jan 5-2016	18:00 HRS	Clear	Normal
Jan 6-2016	08:00 HRS	Clear	Normal
Jan 6-2016	18:00 HRS	Clear	Normal
Jan 7-2016	08:00 HRS	Clear	Normal
Jan 7-2016	18:00 HRS	Clear	Normal
Jan 8-2016	08:00 HRS	Clear	Normal
Jan 8-2016	18:00 HRS	Clear	Normal
Jan 9-2016	08:00 HRS	Clear	Normal
Jan 9-2016	18:00 HRS	Clear	Normal
Jan 10-2016	08:00 HRS	Clear	Normal
Jan 10-2016	18:00 HRS	Clear	Normal
Jan 11-2016 Jan 11-2016	08:00 HRS	Clear Clear	Normal Normal
Jan 12-2016	18:00 HRS 08:00 HRS	Clear	Normal
Jan 12-2016	18:00 HRS	Clear	Normal
Jan 13-2016	08:00 HRS	Clear	Normal
Jan 13-2016	18:00 HRS	Clear	Normal
Jan 14-2016	08:00 HRS	Clear	Normal
Jan 14-2016	18:00 HRS	Clear	Normal
Jan 15-2016	08:00 HRS	Clear	Normal
Jan 15-2016	18:00 HRS	Clear	Normal
Jan 16-2016	08:00 HRS	No 1 on chart	Normal
Jan 16-2016	18:00 HRS	Clear	Normal
Jan 17-2016	08:00 HRS	Clear	Normal
Jan 17-2016	18:00 HRS	Clear	Normal
Jan 18-2016	08:00 HRS	Clear	Normal
Jan 18-2016	18:00 HRS	Clear	Normal
Jan 19-2016	08:00 HRS	Clear	Normal
Jan 19-2016	18:00 HRS	Clear	Normal
Jan 20-2016	08:00 HRS	Clear	Normal
Jan 20-2016	18:00 HRS	Clear	Normal
Jan 21-2016	08:00 HRS	Clear	Normal
Jan 21-2016	18:00 HRS	Clear	Normal
Jan 22-2016	08:00 HRS	Clear	Normal
Jan 22-2016	18:00 HRS 08:00 HRS	Clear	Normal
Jan 23-2016 Jan 23-2016	18:00 HRS	Clear Clear	Normal Normal
Jan 24-2016	08:00 HRS	Clear	Normal
Jan 24-2016	18:00 HRS	Clear	Normal
Jan 25-2016	08:00 HRS	Clear	Normal
Jan 25-2016	18:00 HRS	Clear	Normal
Jan 26-2016	08:00 HRS	Clear	Normal
Jan 26-2016	18:00 HRS	Clear	Normal
Jan 27-2016	08:00 HRS	Clear	Normal
Jan 27-2016	18:00 HRS	Clear	Normal
Jan 28-2016	08:00 HRS	Clear	Normal
Jan 28-2016	18:00 HRS	Clear	Normal
Jan 29-2016	08:00 HRS	Clear	Normal
Jan 29-2016	18:00 HRS	Clear	Normal
Jan 30-2016	08:00 HRS	Clear	Normal
Jan 30-2016	18:00 HRS	Clear	Normal
Jan 31-2016	08:00 HRS	Clear	Normal
Jan 31-2016	18:00 HRS	Clear	Normal

Strong W Winds Strong W Winds Moderate W Winds Moderate W Winds Moderate SW Winds Moderate SW Winds Moderate NNW Winds Moderate N Winds Moderate N Winds Moderate N Winds Moderate W Winds Very Strong W Winds Moderate W Winds Moderate W Winds Moderate NE Winds Moderate NE Winds Moderate ENE Winds Moderate ENE Winds Moderate E Winds Strong E Winds Gale Force SE Winds Strong WSW Winds Strong WNW Winds Moderate E Winds Gale Force SE Winds Storm Force WSW Winds Gale Force W Winds Gale Force W Winds Gale Force WNW Winds Gale Force WNW Winds Light SE Winds Storm Force N Winds Gale Force NW Winds Strong W Winds Strong N Winds Moderate W Winds Gale Force W Winds Gale Force NW Winds Strong NW Winds Strong NW Winds Strong W Winds Strong W Winds Strong NW Winds Strong NW Winds Moderate W Winds Moderate W Winds Gale Force E Winds Gale Force NE Winds Strong NNE Winds Moderate NE Winds Moderate SSW Winds Moderate SSW Winds Strong SW Winds Strong WSW Winds Light N Winds Light SE Winds Strong E Winds Gale Force SE Winds Gale Force NW Winds Strong NW Winds Moderate S Winds Moderate SW Winds

DATE	ТІМЕ	PLUME COLOR	SIZE	COMMENTS
Feb 1-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
Feb 1-2016	18:00 HRS	Clear	Normal	Strong SW Winds
Feb 2-2016	08:00 HRS	Clear	Normal	Strong N Winds
Feb 2-2016	18:00 HRS	Clear	Normal	Strong N Winds
Feb 3-2016	08:00 HRS	Clear	Normal	Moderate N Winds
Feb 3-2016	18:00 HRS	Clear	Normal	Winds light and Variable
Feb 4-2016	08:00 HRS	Clear	Normal	Gale Force S Winds
Feb 4-2016	18:00 HRS	Clear	Normal	Gale Force S Winds
Feb 5-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
Feb 5-2016	18:00 HRS	Clear	Normal	Strong S Winds
Feb 6-2016	08:00 HRS	Clear	Normal	Gale Force NW Winds
Feb 6-2016	18:00 HRS	Clear	Normal	Moderate W winds
Feb 7-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
Feb 7-2016	18:00 HRS	Clear	Normal	Moderate SW Winds
Feb 8-2016	08:00 HRS	Clear	Normal	Strong NE Winds
Feb 8-2016	18:00 HRS	Clear	Normal	Storm Force NE Winds
Feb 9-2016	08:00 HRS	Clear	Normal	Strong NW Winds
Feb 9-2016	18:00 HRS	Clear	Normal	N Light Winds
Feb 10-2016	08:00 HRS	Clear	Normal	Strong W Winds
Feb 10-2016	18:00 HRS	Clear	Normal	Strong W Winds
Feb 11-2016	08:00 HRS	Clear	Normal	Moderate N Winds
Feb 11-2016	18:00 HRS	Clear	Normal	Moderate N Winds
Feb 12-2016	08:00 HRS	Clear	Normal	Gale Force WNW Winds
Feb 12-2016	18:00 HRS	Clear	Normal	Gale Force W Winds
Feb 13-2016	08:00 HRS	Clear	Normal	Strong NE Winds
Feb 13-2016	18:00 HRS	Clear	Normal	Strong NE Winds
Feb 14-2016	08:00 HRS	Clear	Normal	Moderate NE Winds
Feb 14-2016	18:00 HRS	Clear	Normal	Strong W Winds
Feb 15-2016	08:00 HRS	Clear	Normal	Strong W Winds
Feb 15-2016	18:00 HRS	Clear	Normal	Strong W Winds
Feb 16-2016	08:00 HRS	Clear	Normal	Moderate S Winds
Feb 16-2016	18:00 HRS	Clear	Normal	Strong S Winds
Feb 17-2016	08:00 HRS	Clear	Normal	Gale Force S Winds
Feb 17-2016	18:00 HRS	Clear	Normal	Storm Force S Winds
Feb 18-2016	08:00 HRS	No 1 on chart	Normal	Moderate N Winds
Feb 18-2016	18:00 HRS	Clear	Normal	Moderate N Winds
Feb 19-2016	08:00 HRS	Clear	Normal	Gale Force N Winds
Feb 19-2016	18:00 HRS	Clear	Normal	Gale Force N Winds
Feb 20-2016	08:00 HRS	Clear	Normal	Moderate N Winds
Feb 20-2016	18:00 HRS	Clear	Normal	Light S Winds
Feb 21-2016	08:00 HRS	Clear	Normal	Strong S Winds
Feb 21-2016	18:00 HRS	Clear	Normal	Strong S Winds
Feb 22-2016	08:00 HRS	Clear	Normal	Moderate NW
Feb 22-2016	18:00 HRS	Clear	Normal	Moderate NNW Winds
Feb 23-2016	08:00 HRS	Clear	Normal	Moderate N'ly Winds
Feb 23-2016	18:00 HRS	Clear	Normal	Winds light and Variable
Feb 24-2016	08:00 HRS	Clear	Normal	Moderate SE Winds
Feb 24-2016	18:00 HRS	Clear	Normal	Strong SE Winds
Feb 25-2016	08:00 HRS	Obscured in Fog	Normal	Strong S Winds
Feb 25-2016	18:00 HRS	Clear	Normal	Gale Force S Winds
Feb 26-2016	08:00 HRS	Clear	Normal	Strong SW Winds
Feb 26-2016	18:00 HRS	Clear	Normal	Strong SW Winds
Feb 27-2016	08:00 HRS	Clear	Normal	Strong W Winds
Feb 27-2016	18:00 HRS	Clear	Normal	Moderate W Winds
Feb 28-2016	08:00 HRS	Clear	Normal	Moderate W Winds
Feb 28-2016	18:00 HRS	Clear	Normal	Strong W Winds
Feb 29-2016	08:00 HRS	Clear	Normal	Strong SSW Winds
Feb 29-2016	18:00 HRS	Clear	Normal	Strong S Winds

DATE	TIME	PLUME COLOR	<u>SIZE</u>
Mar 01-2016	08:00 HRS	Clear	Normal
Mar 01-2016	18:00 HRS	Clear	Normal
Mar 02-2016	08:00 HRS	Clear	Normal
Mar 02-2016	18:00 HRS	Clear	Normal
Mar 03-2016	08:00 HRS	Clear	Normal
Mar 03-2016	18:00 HRS	Clear	Normal
Mar 04-2016	08:00 HRS	Clear	Normal
Mar 04-2016	18:00 HRS	Clear	Normal
Mar 05-2016	08:00 HRS	Clear	Normal
Mar 05-2016	18:00 HRS	Clear	Normal
Mar 06-2016	08:00 HRS	Clear	Normal
Mar 06-2016 Mar 07-2016	18:00 HRS 08:00 HRS	Clear Clear	Normal Normal
Mar 07-2016	18:00 HRS	Clear	Normal
Mar 08-2016	08:00 HRS	Clear	Normal
Mar 08-2016	18:00 HRS	Clear	Normal
Mar 09-2016	08:00 HRS	Clear	Normal
Mar 09-2016	18:00 HRS	Clear	Normal
Mar 10-2016	08:00 HRS	Clear	Normal
Mar 10-2016	18:00 HRS	Clear	Normal
Mar 11-2016	08:00 HRS	Clear	Normal
Mar 11-2016	18:00 HRS	Clear	Normal
Mar 12-2016	08:00 HRS	Clear	Normal
Mar 12-2016	18:00 HRS	Clear	Normal
Mar 13-2016	08:00 HRS	Clear	Normal
Mar 13-2016	18:00 HRS	Clear	Normal
Mar 14-2016	08:00 HRS	Clear	Normal
Mar 14-2016	18:00 HRS	Clear	Normal
Mar 15-2016	08:00 HRS	Clear	Normal
Mar 15-2016	18:00 HRS	Clear	Normal
Mar 16-2016	08:00 HRS	Clear	Normal
Mar 16-2016	18:00 HRS	Clear	Normal
Mar 17-2016	08:00 HRS	Clear	Normal
Mar 17-2016 Mar 18-2016	18:00 HRS	Clear Clear	Normal Normal
Mar 18-2016	08:00 HRS 18:00 HRS	Clear	Normal
Mar 19-2016	08:00 HRS	Clear	Normal
Mar 19-2016	18:00 HRS	Clear	Normal
Mar 20-2016	08:00 HRS	Clear	Normal
Mar 20-2016	18:00 HRS	Clear	Normal
Mar 21-2016	08:00 HRS	Clear	Normal
Mar 21-2016	18:00 HRS	Clear	Normal
Mar 22-2016	08:00 HRS	Clear	Normal
Mar 22-2016	18:00 HRS	Clear	Normal
Mar 23-2016	08:00 HRS	Clear	Normal
Mar 23-2016	18:00 HRS	Clear	Normal
Mar 24-2016	08:00 HRS	Clear	Normal
Mar 24-2016	18:00 HRS	Clear	Normal
Mar 25-2016	08:00 HRS	Clear	Normal
Mar 25-2016	18:00 HRS	Clear	Normal
Mar 26-2016	08:00 HRS	Clear	Normal
Mar 26-2016	18:00 HRS	Clear	Normal
Mar 27-2016	08:00 HRS	Clear	Normal
Mar 27-2016 Mar 28-2016	18:00 HRS 08:00 HRS	Clear Clear	Normal Normal
Mar 28-2016	18:00 HRS	Clear	Normal
Mar 29-2016	08:00 HRS	Clear	Normal
Mar 29-2016	18:00 HRS	Clear	Normal
Mar 30-2016	08:00 HRS	Clear	Normal
Mar 30-2016	18:00 HRS	Clear	Normal
Mar 31-2016	08:00 HRS	Clear	Normal
Mar 31-2016	18:00 HRS	Clear	Normal

COMMENTS

Strong SW Winds Strong W Winds Light SSE Winds Strong SSE Winds Strong W Winds Strong W Winds Moderate WNW Light E Winds Storm Force NE Winds Hurricane Force NNW Winds Strong NW Winds Light NW Winds Light NE Winds Light NE Winds Moderate NW Winds Moderate NW Winds Moderate W Winds Moderate S Winds Strong W Winds Moderate N Winds Moderate E Winds Strong NE Winds Moderate NW Winds Moderate W Winds Moderate W Winds Gale Force NW Winds Gale Force N Winds Strong NNE Winds Moderate E Winds Moderate E Winds Moderate SE Winds Strong SE Winds Moderate NE Winds Moderate NE Winds Light S Winds Moderate SSW Winds Strong W Winds Strong W Winds Strong NW Winds Moderate NW Winds Gale Force SE Winds Gale Force SE Winds Gale Force W Winds Gale Force WSW Winds Strong SW Winds Strong WSW Winds Strong NW Winds Moderate NW Winds Strong E Winds Strong S Winds Strong NNW Winds Strong N Winds Moderate NE Winds Moderate ENE Winds Moderate ESE Winds Strong SE Winds Gale Force SW Winds Storm Force W Winds Gale Force NW Winds Strong WNW Winds Strong SW Winds Gale Force SW Winds

DATE	ТІМЕ	PLUME COLOR	SIZE	COMMENTS
Apr 01-2016	08:00 HRS	Clear	Normal	SW Gale Force Winds
Apr 01-2016	18:00 HRS	Obscured in FOG	Normal	Gale Force SSW Winds
Apr 02-2016	08:00 HRS	Obscured in FOG	Normal	Strong SW Winds
Apr 02-2016	18:00 HRS	Obscured in FOG	Normal	Strong SW Winds
Apr 03-2016	08:00 HRS	Obscured in FOG	Normal	Light and Variable Winds
Apr 03-2016	18:00 HRS	Clear	Normal	Storm Force SW Winds
Apr 04-2016	08:00 HRS	Clear	Normal	Storm Force W Winds
Apr 04-2016	18:00 HRS	Clear	Normal	Strong W Winds
Apr 05-2016	08:00 HRS	Clear	Normal	Strong NE Winds
Apr 05-2016	18:00 HRS	Clear	Normal	Strong NNE Winds
Apr 06-2016	08:00 HRS	Clear	Normal	Strong NW Winds
Apr 06-2016	18:00 HRS	Clear	Normal	Moderate W Winds
Apr 07-2016	08:00 HRS	Clear	Normal	Moderate S Winds
Apr 07-2016	18:00 HRS	Clear	Normal	Strong S Winds
Apr 08-2016	08:00 HRS	Clear	Normal	Strong SE Winds
Apr 08-2016	18:00 HRS	Clear	Normal	SE Gale Force Winds
Apr 09-2016	08:00 HRS	No.1 on Chart	Normal	Light and Variable Winds
Apr 09-2016	18:00 HRS	Clear	Normal	Moderate SSW Winds
Apr 10-2016	08:00 HRS	Clear	Normal	Strong SW Winds
Apr 10-2016	18:00 HRS	Clear	Normal	Strong W Winds
Apr 11-2016	08:00 HRS	Clear	Normal	Moderate W Winds
Apr 11-2016	18:00 HRS	Clear	Normal	Moderate SW Winds
Apr 12-2016	08:00 HRS	Clear	Normal	Moderate S Winds
Apr 12-2016	18:00 HRS	Clear	Normal	Moderate S Winds
Apr 13-2016	08:00 HRS	Clear	Normal	Strong S Winds
Apr 13-2016	18:00 HRS	Obscured in FOG	Normal	Strong S Winds
Apr 14-2016	08:00 HRS	Clear	Normal	Strong NE Winds
Apr 14-2016	18:00 HRS	Clear	Normal	Strong NE Winds
Apr 15-2016	08:00 HRS	Clear	Normal	Strong ENE Winds
Apr 15-2016	18:00 HRS	Clear	Normal	Strong ENE Winds
Apr 16-2016	08:00 HRS	Clear	Normal	Strong NE Winds
Apr 16-2016	18:00 HRS	Clear	Normal Normal	Strong NE Winds
Apr 17-2016 Apr 17-2016	08:00 HRS	Clear Clear	Normal	Strong NE Winds Strong NE Winds
Apr 18-2016	18:00 HRS 08:00 HRS	Clear	Normal	Moderate to Strong ENE Winds
Apr 18-2016	18:00 HRS	Clear	Normal	Moderate to Strong ENE Winds
Apr 19-2016	08:00 HRS	Clear	Normal	Moderate to Strong NE Winds
Apr 19-2016	18:00 HRS	Clear	Normal	Moderate to Strong NE Winds
Apr 20-2016	08:00 HRS	Clear	Normal	Moderate to Strong N Winds
Apr 20-2016	18:00 HRS	Clear	Normal	Strong to Gale Force N Winds
Apr 21-2016	08:00 HRS	Clear	Normal	Strong to Gale Force NW Winds
Apr 21-2016	18:00 HRS	Clear	Normal	Strong WNW Winds
Apr 22-2016	08:00 HRS	Clear	Normal	Strong NNW Winds
Apr 22-2016	18:00 HRS	Clear	Normal	Strong NW Winds
Apr 23-2016	08:00 HRS	Clear	Normal	Light NNE Winds
Apr 23-2016	18:00 HRS	Clear	Normal	Light E Winds
Apr 24-2016	08:00 HRS	Obscured in FOG	Normal	Moderate S Winds
Apr 24-2016	18:00 HRS	Clear	Normal	Strong NW Winds
Apr 25-2016	08:00 HRS	Clear	Normal	Light NW Winds
Apr 25-2016	18:00 HRS	Clear	Normal	Strong SW Winds
Apr 26-2016	08:00 HRS	Clear	Normal	Light S Winds
Apr 26-2016	18:00 HRS	Clear	Normal	Very Light S Winds
Apr 27-2016	08:00 HRS	Clear	Normal	Moderate NNW Winds
Apr 27-2016	18:00 HRS	Clear	Normal	Light S Winds
Apr 28-2016	08:00 HRS	Clear	Normal	Light W Winds
Apr 28-2016	18:00 HRS	Clear	Normal	Moderate NW Winds
Apr 29-2016	08:00 HRS	Clear	Normal	Light SW Winds
Apr 29-2016	18:00 HRS	Clear	Normal	Light W Winds
Apr 30-2016	08:00 HRS	Clear	Normal	Light W Winds
Apr 30-2016	18:00 HRS	Clear	Normal	Light NW Winds

DATE	TIME	PLUME COLOR	SIZE	<u>COMMENTS</u>
May 01-2016	08:00 HRS	Clear	Normal	Light NNE Winds
May 01-2016	18:00 HRS	Clear	Normal	Light NNE Winds
May 02-2016	08:00 HRS	Clear	Normal	Light SE Winds
May 02-2016	18:00 HRS	Clear	Normal	Moderate SE Winds
May 03-2016	08:00 HRS	Obscured in FOG	Normal	Strong SSE Winds
May 03-2016	18:00 HRS	Clear	Normal	Strong SSE Winds
May 04-2016	08:00 HRS	Clear	Normal	Light NNE Winds
May 04-2016	18:00 HRS	Clear	Normal	Moderate NE Winds
May 05-2016	08:00 HRS	Obscured in FOG	Normal	Strong SSE Winds
May 05-2016	18:00 HRS	Obscured in FOG	Normal	Strong SE Winds
May 06-2016	08:00 HRS	Obscured in FOG	Normal	Strong S Winds
May 06-2016	18:00 HRS	Obscured in FOG	Normal	Strong SSW Winds
May 07-2016	08:00 HRS	Obscured in FOG	Normal	Strong S Winds
May 07-2016	18:00 HRS	Obscured in FOG	Normal	Strong S Winds
May 08-2016	08:00 HRS	Clear	Normal	Strong SW Winds
May 08-2016	18:00 HRS 08:00 HRS	Clear Clear	Normal Normal	Strong W Winds Moderate W Winds
May 09-2016 May09-2016	18:00 HRS	Clear	Normal	Moderate W Winds
May 10-2016	08:00 HRS	Clear	Normal	Light NW Winds
May10-2016	18:00 HRS	Clear	Normal	Light W Winds
May 11-2016	08:00 HRS	Clear	Normal	Moderate SE Winds
May 11-2016	18:00 HRS	Clear	Normal	Moderate S Winds
May 12-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
May 12-2016	18:00 HRS	Clear	Normal	Moderate S Winds
May 13-2016	08:00 HRS	Clear	Normal	Moderate W Winds
May 13-2016	18:00 HRS	Clear	Normal	Moderate W Winds
May 14-2016	08:00 HRS	Clear	Normal	Moderate S Winds
May 14-2016	18:00 HRS	Obscured in FOG	Normal	Moderate SW Winds
May 15-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
May 15-2016	18:00 HRS	Clear	Normal	Moderate W Winds
May 16-2016	08:00 HRS	Clear	Normal	Strong WSW Winds
May 16-2016	18:00 HRS	Clear	Normal	Strong WSW Winds
May 17-2016	08:00 HRS	Clear	Normal	Strong W Winds
May 17-2016	18:00 HRS	Clear	Normal	Strong W Winds
May 18-2016	08:00 HRS	Clear	Normal	Moderate W Winds
May 18-2016	18:00 HRS	Clear	Normal	Moderate W Winds
May 19-2016 May 19-2016	08:00 HRS 18:00 HRS	Clear Clear	Normal Normal	Light E Winds Light SE Winds
May 20-2016	08:00 HRS	Clear	Normal	Light ENE Winds
May 20-2016	18:00 HRS	Clear	Normal	Light NNW Winds
May 20-2010 May 21-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
May 21-2016	18:00 HRS	Clear	Normal	Moderate W Winds
May 22-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
May 22-2016	18:00 HRS	Clear	Normal	Moderate S Winds
May 23-2016	08:00 HRS	Obscured in FOG	Normal	Moderate to Strong SE Winds
May 23-2016	18:00 HRS	Clear	Normal	Moderate to Strong SSW
May 24-2016	08:00 HRS	Obscured in FOG	Normal	Moderate S Winds
May 24-2016	18:00 HRS	Clear	Normal	Strong S Winds
May 25-2016	08:00 HRS	Clear	Normal	Moderate S Winds
May 25-2016	18:00 HRS	Obscured in FOG	Normal	Strong S Winds
May 26-2016	08:00 HRS	Obscured in FOG	Normal	Moderate SW Winds
May 26-2016	18:00 HRS	Clear	Normal	Moderate W Winds
May 27-2016	08:00 HRS	Obscured in FOG	Normal	Moderare NE Winds
May 27-2016	18:00 HRS	Obscured in FOG	Normal	Moderate ENE Winds
May 28-2016	08:00 HRS	Clear	Normal	Moderate to Strong SW Winds
May 28-2016	18:00 HRS	Clear	Normal	Moderate to Strong W Winds
May 29-2016	08:00 HRS	Not Lite	Cold Venting	Moderate N Winds
May 29-2016	18:00 HRS	Clear	Normal	Light NE Winds
May 30-2016	08:00 HRS	Clear Clear	Normal Normal	Strong S Winds
May 30-2016 May 31-2016	18:00 HRS 08:00 HRS	Obscured in FOG	Normal	Strong S Winds Strong WSW Winds
May 31-2016 May 31-2016	18:00 HRS	Obscured in FOG	Normal	Strong WSW Winds
	10.001110	55556156 111 00		

DATE	ТІМЕ	PLUME COLOR	<u>SIZE</u>	<u>COMMENTS</u>
June 01-2016	08:00 HRS	Clear	Normal	Strong WNW Winds
June 01-2016	18:00 HRS	Clear	Normal	Strong WNW Winds
June 02-2016	08:00 HRS	Clear	Normal	Light E Winds
June 02-2016	18:00 HRS	Clear	Normal	Light E Winds
June 03-2016	08:00 HRS	Clear	Normal	Moderate ESE Winds
June 03-2016	18:00 HRS	Clear	Normal	Moderate ESE Winds
June 04-2016	08:00 HRS	Obscured in FOG	Normal	Moderate E Winds
June 04-2016	18:00 HRS	Obscured in FOG	Normal	Moderate E Winds
June 05-2016	08:00 HRS	Clear	Normal	Light E Winds
June 05-2016	18:00 HRS	Clear	Normal	Light E Winds
June 06-2016	08:00 HRS	Clear	Normal	Light SE Winds
June 06-2016	18:00 HRS	Clear	Normal	Strong SE Winds
June 07-2016	08:00 HRS	Obscured in FOG	Normal	Light WSW Winds
June 07-2016	18:00 HRS	Obscured in FOG	Normal	Light SW Winds
June 08-2016	08:00 HRS	Clear	Normal	Strong WNW Winds
June 08-2016	18:00 HRS	Obscured in FOG	Normal	Strong W Winds
June 09-2016	08:00 HRS	Clear	Normal	Strong W Winds
June 09-2016	18:00 HRS	Clear	Normal	Strong W Winds
June 10-2016	08:00 HRS	Clear	Normal	Strong W Winds
June 10-2016	18:00 HRS	Clear	Normal	Strong W Winds
June 11-2016	08:00 HRS	Clear	Normal	Moderate W Winds
June 11-2016	18:00 HRS	Clear	Normal	Moderate W Winds
June 12-2016	08:00 HRS	Clear	Normal	Moderate S Winds
June 12-2016 June 13-2016	18:00 HRS	Obscured in FOG Obscured in FOG	Normal Normal	Strong S Winds Moderate SW Winds
June 13-2016	08:00 HRS 18:00 HRS	Clear	Normal	Moderate SW Winds
June 14-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
June 14-2016	18:00 HRS	Clear	Normal	Moderate SW Winds
June 15-2016	08:00 HRS	Clear	Normal	Moderate W Winds
June 15-2016	18:00 HRS	Clear	Normal	Moderate W Winds
June 16-2016	08:00 HRS	Clear	Normal	Moderate WNW Winds
June 16-2016	18:00 HRS	Clear	Normal	Moderate WNW Winds
June 17-2016	08:00 HRS	Clear	Normal	Moderate NW Winds
June 17-2016	18:00 HRS	Clear	Normal	Moderate NNW Winds
June 18-2016	08:00 HRS	Clear	Normal	Moderate N Winds
June 18-2016	18:00 HRS	Clear	Normal	Moderate SW Winds
June 19-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
June 19-2016	18:00 HRS	Clear	Normal	Moderate SW Winds
June 20-2016	08:00 HRS	Clear	Normal	Moderate WSW Winds
June 20-2016	18:00 HRS	Clear	Normal	Light SSE Winds
June 21-2016	08:00 HRS	Clear	Normal	Strong SSW Winds
June 21-2016	18:00 HRS	Clear	Normal	Strong SSW Winds
June 22-2016	08:00 HRS	Clear	Normal	Strong SW Winds
June 22-2016	18:00 HRS	Clear	Normal	Strong SW Winds
June 23-2016 June 23-2016	08:00 HRS	Clear	Normal Normal	Moderate SW Winds Moderate to Strong SW Winds
June 24-2016	18:00 HRS 08:00 HRS	Clear Clear	Normal	Moderate S Winds
June 24-2016	18:00 HRS	Clear	Normal	Light WSW WInds
June 25-2016	08:00 HRS	Clear	Normal	Light SSE Winds
June 25-2016	18:00 HRS	Obscured in FOG	Normal	Light SSE Winds
June 26-2016	08:00 HRS	Obscured in FOG	Normal	Moderate ENE Winds
June 26-2016	18:00 HRS	Clear	Normal	Strong SE Winds
June 27-2016	08:00 HRS	Clear	Normal	Strong S Winds
June 27-2016	18:00 HRS	Clear	Normal	Strong SW Winds
June 28-2016	08:00 HRS	Obscured in FOG	Normal	Strong SSW Winds
June 28-2016	18:00 HRS	Clear	Normal	Strong SSW Winds
June 29-2016	08:00 HRS	Clear	Normal	Strong S Winds
June 29-2016	18:00 HRS	#3 on chart	Large	Strong S Winds
June 30-2016	08:00 HRS	Clear	Normal	Strong S Winds
June 30-2016	18:00 HRS	Clear	Normal	Strong S Winds

DATE	TIME		CI7E
DATE July 01-2016	<u>TIME</u> 08:00 HRS	PLUME COLOR Obscured in FOG	<u>SIZE</u> Normal
July 01-2016	18:00 HRS	Clear	Normal
July 02-2016	08:00 HRS	Obscured in FOG	Normal
July 02-2016	18:00 HRS	Obscured in FOG	Normal
July 03-2016	08:00 HRS	Clear	Normal
July 03-2016	18:00 HRS	Clear	Normal
July 04-2016	08:00 HRS	Clear	Normal
July 04-2016	18:00 HRS	Clear	Normal
July 05-2016	08:00 HRS	#3 on chart	Large
July 05-2016	18:00 HRS	Clear	Normal
July 06-2016	08:00 HRS	Obscured in FOG	Normal
July 06-2016	18:00 HRS	Clear	Normal
July 07-2016	08:00 HRS	Clear	Normal
July 07-2016	18:00 HRS	Clear	Normal
July 08-2016	08:00 HRS	Clear	Normal
July 08-2016	18:00 HRS	Clear	Normal
July 09-2016	08:00 HRS	Clear	Normal
July 09-2016	18:00 HRS	Clear	Normal
July 10-2016	08:00 HRS	Obscured in FOG	Normal
July 10-2016	18:00 HRS	Obscured in FOG	Normal
July 11-2016	08:00 HRS	Clear	Normal
July 11-2016	18:00 HRS	Clear	Normal
July 12-2016	08:00 HRS	Clear	Normal
July 12-2016	18:00 HRS 08:00 HRS	Clear Clear	Normal Normal
July 13-2016 July 13-2016	18:00 HRS	Clear	Normal
July 14-2016	08:00 HRS	Clear	Normal
July 14-2016	18:00 HRS	Clear	Normal
July 15-2016	08:00 HRS	Clear	Normal
July 15-2016	18:00 HRS	Clear	Normal
July 16-2016	08:00 HRS	Obscured in FOG	Normal
July 16-2016	18:00 HRS	Obscured in FOG	Normal
July 17-2016	08:00 HRS	Clear	Normal
July 17-2016	18:00 HRS	Clear	Normal
July 18-2016	08:00 HRS	Obscured in FOG	Normal
July 18-2016	18:00 HRS	Clear	Normal
July 19-2016	08:00 HRS	Clear	Normal
July 19-2016	18:00 HRS	Obscured in FOG	Normal
July 20-2016	08:00 HRS	Clear	Normal
July 20-2016	18:00 HRS	Clear	Normal
July 21-2016	08:00 HRS	Clear	Normal
July 21-2016	18:00 HRS	Clear	Normal
July 22-2016	08:00 HRS	Clear	Normal
July 22-2016	18:00 HRS	Clear	Normal
July 23-2016	08:00 HRS	Clear	Normal
July 23-2016	18:00 HRS	Clear	Normal
July 24-2016 July 24-2016	08:00 HRS 18:00 HRS	Obscured in FOG Obscured in FOG	Normal Normal
July 25-2016	08:00 HRS	# 1 on chart	Normal
July 25-2016	18:00 HRS	Clear	Normal
July 26-2016	08:00 HRS	Clear	Normal
July 26-2016	18:00 HRS	Clear	Normal
July 27-2016	08:00 HRS	Clear	Normal
July 27-2016	18:00 HRS	Clear	Normal
July 28-2016	08:00 HRS	Clear	Normal
July 28-2016	18:00 HRS	Obscured in FOG	Normal
July 29-2016	08:00 HRS	Obscured in FOG	Normal
July 29-2016	18:00 HRS	Obscured in FOG	Normal
July 30-2016	08:00 HRS	Clear	Large
July 30-2016	18:00 HRS	Clear	Normal
July 31-2016	08:00 HRS	Obscured in FOG	Normal
July 31-2016	18:00 HRS	Clear	Normal

Moderate S Winds Moderate S Winds Moderate S Winds Moderate S Winds Moderate W Winds Strong W Winds Moderate SW Winds Moderate SW Winds Moderate SW Winds Moderate SW Winds Moderate W Winds Moderate NW Winds Light N Winds Light E Winds Strong S Winds Moderate SW Winds Moderate E Winds Moderate E Winds Moderate E Winds Moderate E Winds Strong NNW Winds Strong NNW Winds Moderate NW Winds Light NW Winds Winds Light & Variable Light SE Winds Moderate SW Winds Strong SSW Winds Strong SSW Winds Strong SSW Winds Strong SW Winds Strong SW Winds Light SW Winds Light SSW Winds Moderate WSW Winds Moderate SSW Winds Moderate SW Winds Moderate SW Winds Moderate W Winds Strong SW Winds Moderate WSW Winds Moderate SW Winds Moderate SW Winds Strong SSW Winds Strong SSW Winds Strong SW Winds Moderate SW Winds Light SW Winds Winds Light & Variable Light SSW Winds Moderate SSW Winds Moderate SSW Winds Moderate SSW Winds Light SSW Winds Light SSW Winds Light SSW Winds Light S Winds Light S Winds Moderate NE Winds Moderate N Winds Light W Winds Light W Winds

DATE			0175	000005070
DATE Aug 01-2016	<u>TIME</u> 08:00 HRS	PLUME COLOR Clear	<u>SIZE</u> Normal	COMMENTS Light NE Winds
Aug 01-2016	18:00 HRS	Clear	Normal	Light NE Winds
Aug 02-2016	08:00 HRS	Clear	Normal	Light NE Winds
Aug 02-2016	18:00 HRS	Clear	Normal	Light NE Winds
Aug 03-2016	08:00 HRS	Clear	Normal	Light NE Winds
Aug 03-2016	18:00 HRS	Clear	Normal	Light NE Winds
Aug 04-2016	08:00 HRS	Clear	Normal	Light NNE Winds
Aug 04-2016	18:00 HRS	Clear	Normal	Light NNE Winds
Aug 05-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
Aug 05-2016	18:00 HRS	Clear	Normal	Moderate SW Winds
Aug 06-2016	08:00 HRS	Clear	Normal	Moderate S Winds
Aug 06-2016	18:00 HRS	Clear	Normal	Moderate S Winds
Aug 07-2016	08:00 HRS	Clear	Normal	Strong S Winds
Aug 07-2016	18:00 HRS	Clear	Normal	Strong SW Winds
Aug 08-2016	08:00 HRS	Clear	Normal	Moderate W Winds
Aug 08-2016	18:00 HRS	Clear	Normal	Moderate W Winds
Aug 09-2016	08:00 HRS	Clear	Normal	Light to Moderate WSW winds
Aug 09-2016	18:00 HRS	Clear	Normal	Light to Moderate WSW winds
Aug 10-2016	08:00 HRS	Clear Clear	Normal	Moderate SW Winds
Aug 10-2016	18:00 HRS 08:00 HRS	Clear	Normal Normal	Moderate SW Winds Moderate SW Winds
Aug 11-2016 Aug 11-2016	18:00 HRS	Obscured in FOG	Normal	Moderate SSW Winds
Aug 12-2016	08:00 HRS	Obscured in FOG	Normal	Moderate SW Winds
Aug 12-2016	18:00 HRS	Obscured in FOG	Normal	Strong SW Winds
Aug 13-2016	08:00 HRS	Clear	Normal	Light NNE Winds
Aug 13-2016	18:00 HRS	Clear	Normal	Light NNE Winds
Aug 14-2016	08:00 HRS	#1 on the chart	Large	Moderate SE winds
Aug 14-2016	18:00 HRS	Clear	Normal	Moderate SW Winds
Aug 15-2016	08:00 HRS	#1 on the chart	Large	Light WNW Winds
Aug 15-2016	18:00 HRS	Clear	Normal	Winds Light & Variable
Aug 16-2016	08:00 HRS	Clear	Normal	Light NNW Winds
Aug 16-2016	18:00 HRS	Clear	Normal	Moderate NW Winds
Aug 17-2016	08:00 HRS	Clear	Normal	Light SW Winds
Aug 17-2016	18:00 HRS	Clear	Normal	Strong S Winds
Aug 18-2016	08:00 HRS	Clear	Normal	Strong NW Winds
Aug 18-2016	18:00 HRS	Clear	Normal	Light NW Winds
Aug 19-2016	08:00 HRS	Clear	Normal	Moderate W Winds
Aug 19-2016	18:00 HRS	Clear	Normal	Moderate NW Winds
Aug 20-2016	08:00 HRS	Clear	Normal	Light NE Winds
Aug 20-2016	18:00 HRS	Clear	Normal	Light NE Winds
Aug 21-2016 Aug 21-2016	08:00 HRS 18:00 HRS	Clear #1 on the chart	Normal Large	Light E Winds Moderate ESE Winds
Aug 22-2016	08:00 HRS	#1 on the chart	Large	Strong SE Winds
Aug 22-2016	18:00 HRS	#1 on the chart	Large	Strong S Winds
Aug 23-2016	08:00 HRS	Clear	Normal	Strong NW Winds
Aug 23-2016	18:00 HRS	Clear	Normal	Strong NW Winds
Aug 24-2016	08:00 HRS	Clear	Normal	Light WSW Winds
Aug 24-2016	18:00 HRS	Clear	Normal	Light WSW Winds
Aug 25-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
Aug 25-2016	18:00 HRS	Clear	Normal	Moderate SW Winds
Aug 26-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
Aug 26-2016	18:00 HRS	Clear	Normal	Moderate SW Winds
Aug 27-2016	08:00 HRS	Clear	Normal	Moderate W Winds
Aug 27-2016	18:00 HRS	Clear	Normal	Moderate NW Winds
Aug 28-2016	08:00 HRS	Clear	Normal	Light NE Winds
Aug 28-2016	18:00 HRS	Clear	Normal	Light NE Winds
Aug 29-2016	08:00 HRS	Clear	Normal	Moderate S Winds
Aug 29-2016	18:00 HRS	Clear	Normal	Moderate S Winds
Aug 30-2016	08:00 HRS	Clear	Normal	Strong NW Winds
Aug 30-2016 Aug 31-2016	18:00 HRS 08:00 HRS	Clear Clear	Normal Normal	Moderate NW Winds Moderate SW Winds
Aug 31-2016	18:00 HRS	Clear	Normal	Moderate SW Winds
, ag 01 2010	10.00 1110	Cital		

DATE	TIME	PLUME COLOR	<u>SIZE</u>	<u>COMMENTS</u>
Sept 01-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
Sept 01-2016	18:00 HRS	Clear	Normal	Light S Winds
Sept 02-2016	08:00 HRS	Clear	Normal	Light S Winds
Sept 02-2016	18:00 HRS	Clear	Normal	Light W Winds
Sept 03-2016	08:00 HRS	Clear	Normal	Strong N Winds
Sept 03-2016	18:00 HRS	Clear	Normal	Moderate NW Winds
Sept 04-2016	08:00 HRS	Clear	Normal	Light NE Winds
Sept 04-2016	18:00 HRS	Clear	Normal	Light NE Winds
Sept 05-2016	08:00 HRS	Clear	Normal	Light SE Winds
Sept 05-2016	18:00 HRS	Clear	Normal	Light SE Winds
Sept 06-2016	08:00 HRS	Clear	Normal	Moderate S Winds
Sept 06-2016	18:00 HRS	Clear	Normal	Moderate S Winds
Sept 07-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
Sept 07-2016	18:00 HRS	Clear	Normal	Moderate SW Winds
Sept 08-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
Sept 08-2016	18:00 HRS	Clear	Normal	Moderate WSW Winds
Sept 09-2016	08:00 HRS	#1 on the chart	Large	Strong SSW Winds
Sept 09-2016	18:00 HRS	Clear	Normal	Strong SSW Winds
Sept 10-2016	08:00 HRS	Clear	Normal	Moderate NW Winds
Sept 10-2016	18:00 HRS	Clear	Normal	Moderate NW Winds
Sept 11-2016	08:00 HRS	Clear	Normal	Moderate S Winds
Sept 11-2016	18:00 HRS	Clear	Normal	Moderate S Winds
Sept 12-2016	08:00 HRS	Clear	Normal	Strong NW Winds
Sept 12-2016	18:00 HRS	Clear	Normal	Strong WNW Winds
Sept 13-2016	08:00 HRS	Clear	Normal	Light W Winds
Sept 13-2016	18:00 HRS	Clear	Normal	Moderate W Winds
Sept 14-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
Sept 14-2016	18:00 HRS	Clear	Normal	Moderate SW Winds
Sept 15-2016	08:00 HRS	N/A S/D	N/A S/D	Strong NNW Winds
Sept 15-2016	18:00 HRS	N/A S/D	N/A S/D	Strong N Winds
Sept 16-2016	08:00 HRS	N/A S/D	N/A S/D	Light N Winds
Sept 16-2016	18:00 HRS	N/A S/D	N/A S/D	Winds Light & Variable
Sept 17-2016	08:00 HRS	N/A S/D	N/A S/D	Light WSW Winds
Sept 17-2016	18:00 HRS	N/A S/D	N/A S/D	Light SW Winds
Sept 18-2016	08:00 HRS	N/A S/D	N/A S/D	Strong SSW Winds
Sept 18-2016	18:00 HRS	N/A S/D	N/A S/D	Strong to Moderate SSW Winds
Sept 19-2016	08:00 HRS	N/A S/D	N/A S/D	Moderate SW Winds
Sept 19-2016	18:00 HRS	N/A S/D	N/A S/D	Moderate SW Winds
Sept 20-2016	08:00 HRS	N/A S/D	N/A S/D	Moderate SW Winds
Sept 20-2016	18:00 HRS	N/A S/D	N/A S/D	Moderate SW Winds
Sept 21-2016	08:00 HRS	N/A S/D	N/A S/D	Moderate W Winds
Sept 21-2016	18:00 HRS	N/A S/D	N/A S/D	Moderate W Winds
Sept 22-2016	08:00 HRS	N/A S/D	N/A S/D	Moderate W Winds
Sept 22-2016	18:00 HRS	N/A S/D	N/A S/D	Moderate W Winds
Sept 23-2016	08:00 HRS	N/A S/D	N/A S/D	Moderate E Winds
Sept 23-2016	18:00 HRS	N/A S/D	N/A S/D	Moderate SE Winds
Sept 23-2016	08:00 HRS	N/A S/D	N/A S/D	Strong NNW Winds
Sept 23-2016	18:00 HRS	N/A S/D	N/A S/D	Strong NW Winds
Sept 24-2016	08:00 HRS	N/A S/D	N/A S/D	Strong NNW Winds
Sept 24-2016	18:00 HRS	N/A S/D	N/A S/D	Strong NW Winds
Sept 25-2016	08:00 HRS	N/A S/D	N/A S/D	Strong NW Winds
Sept 25-2016	18:00 HRS	N/A S/D	N/A S/D	Strong NW Winds
Sept 26-2016	08:00 HRS	N/A S/D	N/A S/D	Strong NW Winds
Sept 26-2016	18:00 HRS	N/A S/D	N/A S/D	Strong NW Winds
Sept 27-2016	08:00 HRS	N/A S/D	N/A S/D	Strong W Winds
Sept 27-2016	18:00 HRS	N/A S/D	N/A S/D	Strong W Winds
Sept 28-2016	08:00 HRS	N/A S/D	N/A S/D	Moderate SW Winds
Sept 28-2016	18:00 HRS	N/A S/D	N/A S/D	Moderate S Winds
Sept 29-2016	08:00 HRS	N/A S/D	N/A S/D	Light E Winds
Sept 29-2016	18:00 HRS	N/A S/D	N/A S/D	Strong N Winds
Sept 30-2016	08:00 HRS	N/A S/D	N/A S/D	Light NNE Winds
Sept 30-2016	18:00 HRS	N/A S/D	N/A S/D	Light NNE Winds

DATE	<u>TIME</u>	PLUME COLOR	<u>SIZE</u>	<u>COMMENTS</u>
Oct 01-2016	08:00 HRS	Clear	Normal	Light NNW Winds
Oct 01-2016	18:00 HRS	N/A S/D	N/A S/D	Light N Winds
Oct 02-2016	08:00 HRS	Clear	Normal	Light SE Winds
Oct 02-2016	18:00 HRS	Clear	Normal	Strong SE Winds
Oct 03-2016	08:00 HRS	Clear	Normal	Moderate to Strong N Wind
Oct 03-2016	18:00 HRS	Clear	Normal	Moderate to Strong NE Wind
Oct 04-2016	08:00 HRS	Clear	Normal	Light NE wind
Oct 04-2016	18:00 HRS	Clear	Normal	Light to Moderate E Wind
Oct 05-2016	08:00 HRS	Clear	Normal	Light and Variable Winds
Oct 05-2016	18:00 HRS	Clear	Normal	Light and Variable Winds
Oct 06-2016	08:00 HRS	Clear	Normal	Light and Variable Winds
Oct 06-2016	18:00 HRS	Clear	Normal	Light W Winds
Oct 07-2016	08:00 HRS	Clear	Normal	Light NW Winds
Oct 07-2016	18:00 HRS	#1 on the chart	Large	Moderate NW Winds
Oct 08-2016	08:00 HRS	Clear	Normal	Light ENE Winds
Oct 08-2016	18:00 HRS	Clear	Normal	Moderate SSE Winds
Oct 09-2016	08:00 HRS	Clear	Normal	Moderate S Winds
Oct 09-2016	18:00 HRS	Clear	Normal	Moderate S Winds
Oct 10-2016	08:00 HRS	Clear	Normal	Strong S Winds
Oct 10-2016	18:00 HRS	Clear	Normal	Gale Force SSW Winds
Oct 11-2016	08:00 HRS	No Flare	Cold Venting	Storm Force NNW Winds
Oct 11-2016	18:00 HRS	No Flare	Cold Venting	Strong N Winds
Oct 12-2016	08:00 HRS	No Flare	Cold Venting	Light NE Winds
Oct 12-2016	18:00 HRS	Clear	Normal	Light ESE Winds
Oct 13-2016	08:00 HRS	Clear	Normal	Moderate SE Winds
Oct 13-2016	18:00 HRS	Clear	Normal	Moderate SE Winds
Oct 14-2016	08:00 HRS	Clear	Normal	Moderate SE Winds
Oct 14-2016	18:00 HRS	Clear	Normal	Very Strong NNW Winds
Oct 15-2016	08:00 HRS	Clear	Normal	Gale Force N Winds
Oct 15-2016	18:00 HRS	#1 on the chart	Large	Very Strong NNE Winds
Oct 16-2016	08:00 HRS	Clear	Normal	Moderate NNE Winds
Oct 16-2016	18:00 HRS	Clear	Normal	Light N Winds
Oct 17-2016	08:00 HRS	Clear	Normal	Moderate WSW Winds
Oct 17-2016	18:00 HRS	Clear	Normal	Light NW Winds Moderate NNW Winds
Oct 18-2016	08:00 HRS	Clear Clear	Normal Normal	
Oct 18-2016	18:00 HRS	Clear		Moderate NNW Winds
Oct 19-2016 Oct 19-2016	08:00 HRS 18:00 HRS	Clear	Normal Normal	Strong SW Winds Strong SW Winds
Oct 20-2016	08:00 HRS	Clear	Normal	Moderate N Winds
Oct 20-2016	18:00 HRS	Clear	Normal	Moderate NE Winds
Oct 21-2016	08:00 HRS	Clear	Normal	Moderate SE Winds
Oct 21-2016	18:00 HRS	Clear	Normal	Moderate SE Winds
Oct 22-2016	08:00 HRS	Clear	Normal	Strong SE Winds
Oct 22-2016	18:00 HRS	Clear	Normal	Gale Force SE Winds
Oct 23-2016	08:00 HRS	Clear	Normal	Moderate SW Winds
Oct 23-2016	18:00 HRS	Clear	Normal	Moderate SW Winds
Oct 24-2016	08:00 HRS	Clear	Normal	Strong SW Winds
Oct 24-2016	18:00 HRS	Clear	Normal	Strong SW Winds
Oct 25-2016	08:00 HRS	Clear	Normal	Moderate W Winds
Oct 25-2016	18:00 HRS	Clear	Normal	Moderate W Winds
Oct 26-2016	08:00 HRS	Clear	Normal	Light N Winds
Oct 26-2016	18:00 HRS	Clear	Normal	Light N Winds
Oct 27-2016	08:00 HRS	Clear	Normal	Strong N Winds
Oct 27-2016	18:00 HRS	Clear	Normal	Moderate N Winds
Oct 28-2016	08:00 HRS	Clear	Normal	Strong E Winds
Oct 28-2016	18:00 HRS	Clear	Normal	Strong E Winds
Oct 29-2016	08:00 HRS	Clear	Normal	Gale Force SE Winds
Oct 29-2016	18:00 HRS	Clear	Normal	Strong WSW Winds
Oct 30-2016	08:00 HRS	Clear	Normal	Moderate W Winds
Oct 30-2016	18:00 HRS	Clear	Normal	Moderate W Winds
Oct 31-2016	08:00 HRS	Clear	Normal	Light NE Winds
Oct 31-2016	18:00 HRS	Clear	Normal	Light E Winds

DATE	TIME		0175	~
DATE		PLUME COLOR	<u>SIZE</u>	<u>CC</u>
Nov 01-2016	08:00 HRS	Clear	Normal	Sti
Nov 01-2016	18:00 HRS	Clear	Normal	Ve
Nov 02-2016	08:00 HRS	Clear	Normal	Sti
Nov 02-2016	18:00 HRS	Clear	Normal	Sti
Nov 03-2016	08:00 HRS	Clear	Normal	Sti
Nov 03-2016	18:00 HRS	Clear	Normal	Mo
Nov 04-2016	08:00 HRS	Clear	Normal	Mo
Nov 04-2016	18:00 HRS	Clear	Normal	Mo
Nov 05-2016	08:00 HRS	Clear	Normal	Mo
Nov 05-2016	18:00 HRS	Clear	Normal	Mo
Nov 06-2016	08:00 HRS	Clear	Normal	Wi
Nov 06-2016	17:00 HRS	Clear	Normal	Lig
Nov 07-2016	08:00 HRS	Clear	Normal	Sti
Nov 07-2016	17:00 HRS	Clear	Normal	Sti
Nov 08-2016	08:00 HRS	Clear	Normal	Mo
Nov 08-2016	17:00 HRS	Clear	Normal	Mc
		Clear	Normal	
Nov 09-2016	08:00 HRS			Mo
Nov 09-2016	17:00 HRS	Clear	Normal	Mo
Nov 10-2016	08:00 HRS	Clear	Normal	Mo
Nov 10-2016	17:00 HRS	Clear	Normal	Mo
Nov 11-2016	08:00 HRS	Clear	Normal	Mo
Nov 11-2016	17:00 HRS	Clear	Normal	Mo
Nov 12-2016	08:00 HRS	#1 on the chart	Large	Sti
Nov 12-2016	17:00 HRS	Clear	Normal	Sti
Nov 13-2016	08:00 HRS	Clear	Normal	Ga
Nov 13-2016	17:00 HRS	Clear	Normal	Sti
Nov 14-2016	08:00 HRS	Clear	Normal	Mo
Nov 14-2016	17:00 HRS	Clear	Normal	Mo
Nov 15-2016	08:00 HRS	Clear	Large	Mo
Nov 15-2016	17:00 HRS	Clear	Large	Mo
Nov 16-2016	08:00 HRS	Obscured in FOG	Normal	Mo
Nov 16-2016	17:00 HRS	Clear	Large	Mo
Nov 17-2016	08:00 HRS	Clear	Normal	Mo
Nov 17-2016	17:00 HRS	Clear	Normal	Mc
Nov 18-2016	08:00 HRS	Obscured in FOG	Large	Sti
Nov 18-2016	17:00 HRS	Clear	Normal	Mo
Nov 19-2016	08:00 HRS	Obscured in FOG	Normal	Mo
Nov 19-2016	17:00 HRS	Obscured in FOG	Normal	Mo
Nov 20-2016	08:00 HRS	Clear		Mc
Nov 20-2016		Obscured in FOG	Large	
	17:00 HRS		Normal	Mo
Nov 21-2016	08:00 HRS	Clear	Normal	Sti
Nov 21-2016	17:00 HRS	Clear	Normal	Sti
Nov 22-2016	08:00 HRS	Clear	Normal	Sti
Nov 22-2016	17:00 HRS	Clear	Normal	Sti
Nov 23-2016	08:00 HRS	Clear	Normal	Sti
Nov 23-2016	17:00 HRS	Clear	Normal	Sti
Nov 24-2016	08:00 HRS	Clear	Normal	Ga
Nov 24-2016	17:00 HRS	Clear	Normal	Ga
Nov 25-2016	08:00 HRS	Clear	Normal	Lig
Nov 25-2016	17:00 HRS	Clear	Normal	Lig
Nov 26-2016	08:00 HRS	Clear	Normal	Lig
Nov 26-2016	17:00 HRS	Clear	Normal	Lig
Nov 27-2016	08:00 HRS	Clear	Normal	Ste
Nov 27-2016	17:00 HRS	Clear	Normal	Ste
Nov 28-2016	08:00 HRS	Clear	Normal	Sti
Nov 28-2016	17:00 HRS	Clear	Normal	Sti
Nov 29-2016	08:00 HRS	Clear	Normal	Sti
Nov 29-2016	17:00 HRS	Clear	Normal	Sti
Nov 30-2016	08:00 HRS	Clear	Normal	Sti
Nov 30-2016	17:00 HRS	Clear	Normal	Ga
		5.00.		00

strong N Winds ery Strong N Winds trong N Winds trong N Winds trong NNW Winds oderate NNW Winds loderate E Winds oderate NNW Winds Ioderate NNW Winds Ioderate NNW Winds /inds Light & Variable ight NE Winds trong NE Winds trong NE Winds Ioderate ENE Winds oderate ENE Winds loderate N Winds Ioderate NNW Winds Ioderate NW Winds Ioderate NW Winds Ioderate SW Winds Ioderate SW Winds trong NW Winds Strong NW Winds ale Force WSW Winds trong WSW Winds Ioderate SW Winds Ioderate SW Winds Ioderate SSE Winds Ioderate SSE Winds loderate E Winds loderate E Winds Ioderate S Winds loderate W Winds trong E Winds loderate E Winds loderate E Winds Ioderate E Winds Ioderate S Winds Ioderate S Winds trong SW Winds strong SW Winds strong SW Winds Strong SW Winds trong W Winds strong W Winds ale Force NW Winds ale Force NW Winds ight N Winds ight N Winds ight E Winds ight E Winds Storm Force SE Storm Force SW strong W Winds strong W Winds trong NW Winds trong NW Winds trong SE Winds ale Force NE Winds

DATE	TIME	PLUME COLOR	<u>SIZE</u>
Dec 01-2016	08:00 HRS	Clear	Normal
Dec 01-2016	17:00 HRS	Clear	Normal
Dec 02-2016	08:00 HRS	Clear	Normal
Dec 02-2016	17:00 HRS	Clear	Normal
Dec 03-2016	08:00 HRS	Clear	Normal
Dec 03-2016	17:00 HRS	Clear	Normal
Dec 04-2016	08:00 HRS	Clear	Normal
Dec 04-2016	17:00 HRS	Clear	Normal
Dec 05-2016	08:00 HRS	Clear	Normal
Dec 05-2016	17:00 HRS	Clear	Normal
Dec 06-2016	08:00 HRS	Clear	Normal
Dec 06-2016	17:00 HRS	Clear	Normal
Dec 07-2016	08:00 HRS	Clear	Normal
Dec 07-2016	17:00 HRS	Clear	Normal
Dec 08-2016	08:00 HRS	Clear	Normal
Dec 08-2016	17:00 HRS	Clear	Normal
Dec 09-2016	08:00 HRS	Clear	Normal
Dec 09-2016 Dec 10-2016	17:00 HRS 08:00 HRS	Clear Clear	Normal Normal
Dec 10-2016 Dec 10-2016	17:00 HRS	Clear	Normal
Dec 10-2016 Dec 11-2016	08:00 HRS	Clear	Normal
Dec 11-2016	17:00 HRS	Clear	Normal
Dec 12-2016	08:00 HRS	Clear	Normal
Dec 12-2016	17:00 HRS	Clear	Normal
Dec 13-2016	08:00 HRS	Clear	Normal
Dec 13-2016	17:00 HRS	Clear	Normal
Dec 14-2016	08:00 HRS	Clear	Normal
Dec 14-2016	17:00 HRS	Clear	Normal
Dec 15-2016	08:00 HRS	Clear	Normal
Dec 15-2016	17:00 HRS	Clear	Normal
Dec 16-2016	08:00 HRS	Clear	Normal
Dec 16-2016	17:00 HRS	Clear	Normal
Dec 17-2016	08:00 HRS	Clear	Normal
Dec 17-2016	17:00 HRS	Clear	Normal
Dec 18-2016	08:00 HRS	Clear	Normal
Dec 18-2016	17:00 HRS	Obscured in FOG	Normal
Dec 19-2016	08:00 HRS	Clear	Small
Dec 19-2016	17:00 HRS	Clear	Normal
Dec 20-2016	08:00 HRS	Clear	Normal
Dec 20-2016	17:00 HRS	Clear	Normal
Dec 21-2016	08:00 HRS	Clear	Normal
Dec 21-2016	17:00 HRS	Clear	Normal
Dec 22-2016	08:00 HRS	Clear	Normal
Dec 22-2016	17:00 HRS	Clear	Normal
Dec 23-2016 Dec 23-2016	08:00 HRS 17:00 HRS	Clear Clear	Normal Normal
Dec 23-2016 Dec 24-2016	08:00 HRS	Clear	Normal
Dec 24-2016	17:00 HRS	Clear	Normal
Dec 25-2016	08:00 HRS	Clear	Normal
Dec 25-2016	17:00 HRS	Clear	Normal
Dec 26-2016	08:00 HRS	Clear	Normal
Dec 26-2016	17:00 HRS	Clear	Normal
Dec 27-2016	08:00 HRS	Clear	Normal
Dec 27-2016	17:00 HRS	Clear	Normal
Dec 28-2016	08:00 HRS	Clear	Normal
Dec 28-2016	17:00 HRS	Clear	Normal
Dec 29-2016	08:00 HRS	Clear	Normal
Dec 29-2016	17:00 HRS	Clear	Normal
Dec 30-2016	08:00 HRS	Clear	Normal
Dec 30-2016	17:00 HRS	Clear	Normal
Dec 31-2016	08:00 HRS	Clear	Normal
Dec 31-2016	17:00 HRS	Clear	Normal

Strong E Winds Gale Force ESE Winds Gale Force W Winds Gale Force W Winds Strong NW Winds Strong NW Winds Strong N Winds Strong NNW Winds Strong NW Winds Moderate NW Winds Moderate NNW Winds Moderate NNW Winds Moderate NNW Winds Moderate NNW Winds Light WSW Winds Light S Winds Strong NW Winds Moderate NW Winds Gale Force SE Winds Gale Force W Winds Gale Force W Winds Moderate S Winds Moderate SSE Winds Moderate W Winds Gale Force S Winds Storm Force W Winds Storm Force W Winds Strong W Winds Moderate SW Winds Strong SW Winds Gale Force SW Winds Strong NW Winds Moderate NW Winds Light N Winds Light NE Winds Light SW Winds Moderate SW Winds Light W Winds Light S Winds Moderate NNE Winds Moderate WNW Winds Strong SW Winds Strong SW Winds Strong WSW Winds Gale Force WSW Winds Gale Force NW Winds Moderate to Strong WNW winds Moderate SE winds Very Strong SW Winds Moderate NW Winds Moderate NW Winds Light N Winds Moderate SE Winds Storm Force SE Winds Strong W Winds Moderate W Winds Gale Force W Winds