Quantitative petroleum resource assessment in the Canada-Nova Scotia Offshore Area (Scotian Shelf, Scotian Slope, and Sydney Basin)

Mark E. Deptuck*, Kristopher L. Kendell, Carl Makrides, and Brian Altheim

Canada-Nova Scotia Offshore Petroleum Board, 27-201 Brownlow Avenue, Dartmouth, Nova Scotia, B3B 1W2

E-mail: mdeptuck@cnsopb.ns.ca*

Executive Summary

A margin-wide quantitative petroleum resource assessment was carried out on the Scotian Shelf and Slope, focused mainly on the Scotian Basin, off mainland Nova Scotia, and the Sydney Basin, off Cape Breton Island (Figure 1). This offshore assessment was conducted using subsurface seismic mapping, geoscience/petrophysical interpretations, and available well data, in water depths ranging from a few tens of meters to roughly 4000 m.

The study area is separated into the following six geographic regions, based on geological criteria like sedimentation rates, depositional settings, and tectono-stratigraphic style (a combination of basement tectonics and salt-related deformation).

- A. LaHave Platform (4 plays)
- B. West Shelburne Corridor (7 plays)
- C. Shelburne Corridor (7 plays)
- D. Abenaki-Sable Corridor (12 plays)
- E. Huron Corridor (11 plays)
- F. Sydney Basin (3 plays)

Each geographic region contains between three and twelve play types, for a total of 44 plays. The total area for each of the 44 play types was determined using geological knowledge derived from well data and reflection seismic mapping, with the proportion of that area under trap determined primarily from cumulative lead mapping to estimate the total area of each play type under closure (generally with up to a +/-20% range depending on data density, mapping uncertainty, and accounting for potential velocity model errors). Other resource assessment input parameters such as net reservoir thickness, porosity, water saturation, etc. were derived from available and analogous Nova Scotia offshore wells and reservoirs, as applicable. Plays in each region were risked at both the play level and prospect level, with the risking in each region treated as separate assessments. As such, a successful proven play in one region (e.g. Cretaceous rollover traps in Abenaki-Sable Corridor, with a play-level chance of success/risk of 1.0), does not pre-suppose a zero play risk in another region (e.g. Cretaceous rollover traps in the West Shelburne Corridor, with untested potential, and hence lower playlevel chance of success). This is necessary due to abrupt lateral variations in input parameters across different regions and resulting variations in play-level geological risk.

The above inputs and geological risk parameters were entered into the @Risk[™] Monte Carlo style probabilistic simulation software to generate a series of risked and unrisked petroleum resource estimates for each play along with the overall probabilistic total volumes for the combined study area (Table 1). The CNSOPB's mean (expected value) resource estimate for the total risked recoverable natural gas across the study area is 48.1 Trillion cubic feet (Tcf). Of this volume, 2.1 Tcf were produced from the five gas fields in the Sable Offshore Energy Project (SOEP), 147 Billion cubic feet (Bcf) were produced from the Deep Panuke field (of the estimated 647 Bcf estimated to be in place) (Belghiszadeh et al. 2023), and another 2 Tcf of fully risked recoverable gas is estimated to be contained in undeveloped significant discoveries in the Sable Subbasin and eastern Scotian Shelf (Smith et al. 2014). The mean (expected value) resource estimate for the total risked recoverable oil across the study area is 1.3 billion barrels, of which 44.5 MMB was produced during the Cohasset-Panuke project, another 16.3 MMB is estimated to be recoverable from West Sable and Primrose significant discoveries, and 51.6 MMB of mean recoverable oil is contained in the undeveloped Penobscot discovery (Kendell et al. 2013; Smith et al. 2015).

	Natur	al Gas	Natural Gas Liquids			Dil	Oil Equivalent		
	BCF	10 ⁹ m ³	MMB	10 ⁶ m ³	MMB	10 ⁶ m ³	MMBOE	10 ⁶ m ³	
In-Place	721,883	20,441	6,650	1,057	81,836	13,011	232,707	36,997	
Unrisked	(800,433)	(22,666)	(7,510)	(1194)	(97,133)	(15,443)	(259,058)	(41,187)	
In-Place	70,424	1,994	669	106	4,356	693	17,962	2,856	
Risked	(139,593)	(3,953)	(1,344)	(214)	(9,963)	(1,584)	(35,344)	(5,619)	
Recoverable	455,454	12,897	4,403	700	21,775	3,462	110,043	17,495	
Unrisked	(511,536)	(14,485)	(5,026)	(799)	(25,411)	(4,040)	(122,624)	(19,496)	
Recoverable	48,097	1,362	473	75	1,278	203	10,260	1,631	
Risked	(98,011)	(2775)	(972)	(155)	(2,880)	(458)	(20,458)	(3,253)	

Table 1. Petroleum Resource Estimates – Scotian Basin and Sydney Basin. Table shows Mean values, with P10 values in brackets.

As such, this report indicates that the total mean recoverable hydrocarbon resource in the Scotian and Sydney basins is roughly ten times greater than the total volume of known recoverable and produced gas and oil to date. The mean overall petroleum resource estimates for natural gas, natural gas liquids, oil and oil equivalent volumes are tabulated above. For a detailed description of the results from the CNSOPB's petroleum resource assessment, please refer to the *Petroleum Resource Assessment* section of this report and Appendices 1 to 6.

Omissions from this resource assessment include the Fundy Basin and parts of the Maritimes Basin located west of Cape Breton Island, as well as areas beyond the 4000 m bathymetric contour where there is limited to no subsurface geophysical data (e.g. seismic). Likewise, a more fulsome geological evaluation of the Middle to Late Cenozoic succession (post-Eocene) has not been done beyond the work of Campbell et al. (2015), Campbell and Mosher (2015), and Deptuck and Kendell (2020). Shallow burial depths and erosion make this interval unlikely to have exploration potential on the continental shelf, but the more expanded and highly complex stratigraphic succession on the continental slope requires further study to evaluate its hydrocarbon resource potential (within interfingering turbidite, contourite, and mass transport deposits).

Introduction

The oil and gas potential of the Scotian margin has been studied for more than six decades, resulting in the collection of widespread 2D and 3D multichannel seismic datasets and the drilling of 124 unique exploration wells that have tested Paleozoic, Mesozoic, and Cenozoic hydrocarbon targets. Twenty-three significant discoveries have been declared – all of which are located on the central to eastern Scotian Shelf - within 100 km of Sable Island (Figure 1 inset). Eight of these were developed into three separate commercial projects (Cohasset-Panuke, Sable Offshore Energy Project, and Deep Panuke), with production of natural gas, condensate, and oil from both siliciclastic and carbonate reservoirs (Smith et al. 2014; Belghiszadeh et al. 2023). Numerous other proven gas, condensate, and oil discoveries remain undeveloped on the continental shelf. However, with the decommissioning and abandonment of the above projects, there is no longer any hydrocarbon production on the Scotian Shelf. Likewise, the relatively small number of wells on the continental slope, to date, have failed to identify commercial volumes of hydrocarbons (Kidston et al. 2007; Deptuck and Kendell 2020, 2022), and all exploration licences have now expired, with land returned to crown.

The Canada-Nova Scotia Offshore Petroleum Board (CNSOPB) geophysical regulations require exploration companies to submit copies of collected seismic data to the CNSOPB for archiving (Figure 1a, b). Likewise, detailed well history reports describing drilling results are also archived at the CNSOPB (Figure 1c). As part of its resource management mandate, these datasets are used by CNSOPB geoscience staff to evaluate the geology and hydrocarbon potential of the Canada-Nova Scotia Offshore Area. The last exploration cycle (2012 to 2018)

CNSOPB Geoscience Open File Report 2024-001MF 111 p.

Figure 1 continued...(Inset) Closeup of the Sable Island area showing the distribution of former Production and current Significant Discovery licences.

resulted in the collection of two large wide-azimuth 3D seismic volumes on the central and western Scotian Slope (Shelburne and Tangier 3D volumes), and three wildcat exploration wells (Cheshire L-97/L-97A, Monterey Jack E-43/E-43A, and Aspy D-11/D-11A) (see Deptuck and Kendell 2020, 2022) (Figures 1, 2). Combined with historical archived data, interpretation of these datasets provides new insight into key elements of the petroleum system (trap, reservoir, seal, and source rock), how they vary across the study area, and their impacts of potential hydrocarbon resources.

Geographic subdivision of the study area

This study provides an updated fully risked quantitative petroleum resource assessment of the Scotian Shelf (including the region east of Cape Breton Island) and the Scotian Slope stretching from the Canada-United States border to the Nova Scotia-Newfoundland-Labrador provincial boundary (Figure 1). Geological information presented in this report was derived from both unpublished work and several previously published CNSOPB reports that provide more in-depth geological information about the Scotian Shelf, Scotian Slope, and Sydney Basin (e.g. Kidston et al. 2007; Deptuck 2008, 2011, 2020; Deptuck and Kendell 2012, 2017, 2020, 2022; Kendell and Deptuck 2012; Kendell 2012; Smith et al. 2014, 2016, 2018; Kendell et al. 2013, 2016, 2017; Deptuck and Altheim 2018). The reader can access most of these reports here: Geoscience Publications | Canada-Nova Scotia Offshore Petroleum Board (CNSOPB). The reader is also referred to the collaborative Scotian Basin Integration Atlas (2023) for additional details about mapping deepwater architectural elements, sequence stratigraphy, lead high-grading, and petroleum system modelling (report can be accessed here: Scotian Basin Integration Atlas 2023 | Nova Scotia Offshore Energy Research Association (oera.ca).

Seismic horizons were correlated through Upper Paleozoic, Mesozoic, and Lower Cenozoic strata variably distributed across the study area and calibrated to available well data. Seismic markers were then gridded and depth-converted using Petrel software and the velocity model described in Appendix 5 of Scotian Basin Integration Atlas (2023) that covers most of the Scotian Basin. For areas not covered by this model, an in-house layer-cake velocity model was used for depth conversions (e.g. for the Sydney Basin off Cape Breton Island; see Kendell et al. 2017). While depth-structure maps show the distribution, size, and style of potential

hydrocarbon traps, isopach maps between key depthstructure surfaces provide important information about sediment dispersal through time. Using geological criteria like sedimentation rates (derived from isopach maps), dominant depositional environments, and the timing and style of salt expulsion (Shimeld 2004; Deptuck and Kendell 2017), the study area is separated into six geologically distinct geographic regions, each with a different suite of play types, geological risk parameters and resulting potential hydrocarbon resources (regions A through F). These regions are shown on Figure 1 and 2 and are described in more detail in the Geological Setting section. In addition to their geology, significant variations also exist in the extent and quality of reflection seismic coverage and the distribution of borehole information across each of these six regions.

Seismic data coverage

Although 2D seismic coverage is extensive over most of the areas examined in this study, some seismic programs were acquired before 1980, and seismic image quality and resolution is highly variable. The continental slope of regions B, C, D, and E is generally covered by 3 to 6 km spaced 2D multichannel seismic profiles collected in the late 1990s to early 2000s, providing fair to good image quality and data density in most deepwater areas (Figure 1b). Exceptions do exist where salt overhangs or highly complex salt-related deformation degrades seismic imaging (e.g. areas below salt-stock canopies or flaring diapirs, in regions B, D, and parts of E), and out-of-plane artefacts can be severe. There is also generally poor data density seaward of the primary salt basin (areas B, C, D, E) and large swaths of the continental shelf lack modern data-sets, particularly in region A (LaHave Platform) and the landward parts of region B (Georges Bank). Most of the 2D seismic profiles in these areas were scanned and vectorized from paper copies or microfiche (e.g. see Deptuck and Altheim 2018), which strongly impacts interpretation confidence.

Since 1985, exploration companies have also amassed some 49 000 km² of 3D reflection seismic data across Nova Scotia's continental shelf and slope. Excluding overlap, these surveys provide very good to excellent subsurface imaging across an area of more than 39 700 km² (Figure 1a) The distribution of 3D seismic data, however, is sharply skewed towards region C (46%) and D (49%). All other areas have minimal or no 3D seismic coverage (less than 5% coverage; Table 2). **Table 2.** Summary of 3D seismic coverage relative to each of the six regions examined in this study. Only two regions have more than 5% 3D seismic coverage (in bold). Also shown qualitatively is the relative coverage and quality of available 2D seismic programs on the shelf and slope in each region.

Region	Area (km²)	3D seismic	% coverage by	2D seismic coverage/overall quality
A Lallavo Blatform		212		Shelf near/average to near
A. LUHUVE Plutjoim	109 015	212	<<1 %	Shell – poor/average to poor
B. West Shelburne	31 767	518	<2 %	Shelf – good/poor
Corridor				
				Slope – average/average to poor
C. Shelburne Corridor	34 733	15 996	46 %	Shelf – average/poor
	01700	10 000		
				Slope – average/good to average
D Sahle-Ahenaki	12 852	21.057	/9 %	Shelf – good/average
D. Jubie-Aberiuki	42 002	21 057	45 /0	Shell good/average
Cornuor				Slope – average/average to poor
	40.004	1040	F 0/	
E. Huron Corriaor	40 894	1940	5 %	Shelf – poor/average to poor
				Slope – good/average
F. Sydney Basin	21 915	0	0 %	Shelf – poor/poor

Well data and hydrocarbon occurrences

Included within the perimeter of the study area are 122 exploration wells, distributed unevenly across the six defined regions (Table 3). In addition to providing direct calibration of rock types, petrophysical well logs and actual rock/fluid samples provide the clearest evidence for or against the existence of an active petroleum system.

Region A (LaHave Platform) is the largest area considered. With 22 wells, this region averages just one well for every 4955 sq km. Cretaceous fluvial-deltaic reservoirs in Erie D-26, Wyandot E-53, Mic Mac J-77, Mic Mac D-89 contain strong oil staining and several meters of reservoired oil that have been tied to an older, pre-Tithonian restricted marine, marly source rock (Kendell et al. 2013; Fowler 2020; Scotian Basin Integration Atlas 2023). Narrow rift basins underlie these well locations, which may have favoured late synrift or early post-rift accumulation of a restricted marine source rock. Aside from a minor gas show in unconsolidated Quaternary cover strata at Montagnais I-94 (377.6-383.7 m), no other hydrocarbon occurrences have been documented in the expansive area of region A.

Region B (West Shelburne Corridor) spans the shelf and slope off Georges Bank. With just one shelf well (Bonnet P-23) for an area covering 31 767 sq km, this region has the lowest well-density of the six regions examined in this study. Aside from minor gas shows in Bonnet P-23 (Deptuck et al. 2015), the dearth of wells and complete absence of deepwater wells, makes it difficult to evaluate its hydrocarbon potential. It is also noteworthy that an Early Eocene unconformity associated with the Montagnais bolide impact (Jansa and Pe-Piper 1987), coupled with older Cretaceous unconformities, cuts out much of the mid-Cretaceous succession (Deptuck and Campbell 2012), which remains largely untested in region B (discussed in more detail in the reservoir risking section).

Region C (Shelburne Corridor) contains seven wells, with a well-density of one well for every 4962 sq km. Two mud-gas peaks in Upper Jurassic carbonates on the shelf at the Albatross B-13 (3434-3440), and a minor mud-gas response from a thin Miocene siltstone on the slope at Torbrook C-15 (Kidston et al. 2007) provide the only borehole evidence of hydrocarbons in region C (Deptuck et al. 2015). Like Bonnet P-23, much of the Cretaceous succession in the two shelf wells in region C (Acadia K-62 and Albatross B-13) was eroded along Eocene and older unconformities or is condensed below seismic resolution. Five wells in region C are located on the slope (relative to Cretaceous paleogeography), with Shelburne G-29 (drilled in 1985), Monterey Jack E-43/E-43A and Cheshire L-97/97A (both drilled in 2016), providing the most complete stratigraphic calibration (and the only deepwater calibration of Jurassic strata anywhere in study area) (see Figure 2). None of these wells, however, encountered hydrocarbons, and likewise they found very **Table 3.** Summary of exploration wells and hydrocarbon occurrences in each of the six areas examined in this study. References – 1. Kendell et al 2013; 2. Fowler 2019; 3. Smith et al. 2014; 4. Belghiszadeh et al. 2023; 5. Kendell et al. 2017; 6. Deptuck et al. 2015; 7. Smith et al. 2015

	# of	Commercial and Significant	Other noteworthy hydrocarbon		
Region	wells	Discoveries (hydrocarbon phase)	occurrences (hydrocarbon phase)	hase) Ref.	
A. LaHave Platform	22	-	Erie D-26, Wyandot E-53, Mic Mac J- 77, Mic Mac D-89 (several meters of light reservoired oil, from pre- Tithonian source rock)	1, 2	
			Mic Mac H-86 (minor oil staining)		
B. West Shelburne Corridor	1	-	Bonnet P-23 minor gas show	6	
C. Shelburne Corridor	7	-	-	-	
D. Sable-Abenaki Corridor	71	Sable Offshore Energy Project - Alma, North Triumph, Thebaud, Venture, South Venture (2.1 TCF gas produced) Cohasset-Panuke Field (44.5 MMB oil produced) Deep Panuke Field (147 Bcf gas produced of the 647 Bcf recoverable) Arcadia (gas) Chebucto (gas) Citnalta (gas/condensate) Glenelg (gas/condensate) Glenelg (gas/condensate) Intrepid (gas) Olympia (gas/condensate) Primrose (gas/oil) South Sable (gas) Uniacke (gas) West Olympia (gas) West Sable (gas/condensate/ oil) West Venture C-62 (gas) West Venture N-91 (gas)	Penobscot L-30 (light oil, 65-148 MMB in place) Iroquois J-17 (oil staining) Missisauga H-54 (minor oil staining) Bluenose G-47 (gas show) Eagle D-21 (gas, 1.27 Tcf in place) Annapolis G-24 (gas/condensate) Newburn H-23 (gas/condensate) Aspy D-11 (gas/condensate)	1, 3, 4, 7	
E. Huron Corridor	19	Banquereau (gas/condensate)	SW Banquereau F-34 (gas/condensate) Louisbourg J-47 (gas/condensate) Chippewa L-75, G-67 (minor oil staining)	1, 3,	
F. Sydney Basin	2	-	North Sydney P-05 (gas) North Sydney F-24 (gas)	5	

little evidence for deepwater reservoir development (Deptuck and Kendell 2020).

Region D (Abenaki-Sable Corridor) contains 71 exploration wells, and a mean density of one well for every 604 sq km (Table 3). Well distribution in region D, however, is strongly skewed towards the continental shelf, with only six wells located on the continental slope where well density diminishes to just one well for every 4709 sq km. Nonetheless, there is widespread evidence for trapped hydrocarbons throughout region D. The continental shelf here is home to three former commercial developments (Cohasset-Panuke, Sable Offshore Energy Project, and Deep Panuke), with production of gas, condensate, and oil from both siliciclastic and carbonate reservoirs (Smith et al. 2014; Belghiszadeh et al. 2023). Likewise, several additional significant discoveries and other trapped hydrocarbons (both liquid and gas) demonstrate an effective hydrocarbon system is present in region D (Table 3). On the slope, three of the six exploration wells in region D (Newburn H-23; Aspy D-11/D-11A; and Annapolis G-24) encountered noteworthy gas-charged turbidite sandstones/siltstones, with minor gas shows also recorded in the reservoir-lean Balvenie B-79 and Weymouth A-45 wells (Kidston et al. 2007; Deptuck 2008; Deptuck and Kendell 2020).

Region E (Huron Corridor) contains 19 exploration wells, averaging one well for every 2131 sq km. The Banquereau significant discovery, located on the outer shelf of region E, consists of Cretaceous gas-charged fluvial-deltaic reservoirs in a fault rollover structure, similar to most of the significant discoveries in the Sable Subbasin (Smith et al. 2014). Significant gas shows were also documented at Southwest Banquereau F-34 and Louisbourg J-47, and minor oil staining is present in Chippewa L-75 and G-67, all located on the shelf (Kendell et al. 2013). Like region D, however, well control is strongly skewed towards the continental shelf, with only one well (Tantallon M-41) providing calibration of slope strata in an area of 24 259 sq km – the lowest well-density on the slope after region B. Tantallon M-41 well

encountered a ~10 m interval of gas charged sands (Goodway et al., 2008), but very little reservoir-quality sandstone was encountered in the well. That the well did not reach earliest Cretaceous or Jurassic strata, means that the nearest calibration for such strata is Cheshire L-97, more than 350 km to the southwest, in an area with much slower sedimentation rates (region C - discussed in more detail in the reservoir risking section). Together, these hydrocarbon occurrences show that an active petroleum system is present in region E, but it is poorly calibrated on the slope.

Region F (offshore Sydney Basin) has just two wells in an area of 21915 sq km – North Sydney F-24 and North Sydney P-05 (Kendell et al. 2017). Both wells encountered gas in low porosity Pennsylvanian sandstone formations above the Horton Group. North Sydney F-24 was flow tested but was unable to flow gas to surface.

Geologic Setting

The six geographic regions that make up the study area (Table 4) record important spatial variations in the tectonic setting, timing and amount of sediment supply, characteristics of the primary salt layer (age, location, thickness), and the magnitude of basement subsidence (combination of mechanical thinning of the crust, thermal subsidence, and isostatic loading). Regions A through E on the Scotian Shelf and Slope developed in the Mesozoic, during Triassic rifting, plate separation, and Early Jurassic break-up, with the eventual post-rift emplacement of oceanic crust between Nova Scotia and Morocco (e.g. Mclver 1972; Jansa and Wade 1975; Given 1977; Holser et al. 1988; Welsink et al. 1989; Wade and MacLean 1990). In contrast, region F (Sydney Basin) located off Cape Breton Island, developed during an older Late Paleozoic period of tectonics involving oblique convergence as Pangea was assembled (Gibling et al. 2008; Waldron et al. 2015). Aside from the sharp truncation of folded Permian to Carboniferous strata along a prominent Quaternary unconformity, the Sydney Basin appears relatively unaffected by the younger Atlantic rift.

Mesozoic Atlantic margin

In the early stages of Mesozoic rifting, Triassic sediments

in region A accumulated in a complex network of rift basins that formed adjacent to the most prominent extensional basement border faults (Figures 3, 4). In some areas, like the Yarmouth Subbasin (Georges Bank; Deptuck et al. 2015) and Oneida Graben (central Scotian Shelf; Deptuck and Altheim 2018 – Figure 5), suspected intervals of pre-rift salt-bearing Carboniferous strata were variably overprinted by Mesozoic extensional tectonics (analogous to the situation along the southern Grand Banks, where several wells encountered pre-rift salt-bearing Carboniferous strata below Mesozoic saltbearing syn-rift strata; Pascucci et al. 1999; McAlpine et al. 2004). The landward parts of the platform were heavily eroded, and as such both basement horst blocks and intervening rift basins are truncated along a prominent peneplain surface (Figure 5). Early fill, sourced locally from elevated pre- or syn-rift topography, is mainly made up of immature siliciclastics deposited in alluvial, fluvial, playa-lacustrine, or eolian environments (e.g. Wade et al. 1996; Olsen 1997; Leleu et al. 2009). Collectively referred to as Eurydice Formation (Jansa and Wade 1975), these syn-rift red beds pass up-section or laterally (moving further offshore) into evaporites (e.g. Holser et al. 1988; Wade and MacLean 1990; Deptuck and Kendell 2017; Deptuck and Altheim 2018).

Figure 4. Perspective view from the southwest showing the semi-transparent top basement surface with basement-involved faults that were active during Mesozoic rifting along the Maritimes Atlantic margin (mainly on the LaHave Platform; from Deptuck and Altheim (2018).

Figure 5. Composite seismic section across the Oneida Graben (region A), showing both folded/shortened pre-rift Carboniferous(?) strata (uncalibrated), and overlying Eurydice to Argo syn-tectonic succession. Note the bright green J200 marker was jump-correlated from Glooscap C-63 that encountered 152 m thick CAMP-related basalt in the Mohican Graben, southwest of the Oneida Graben; PU = post-rift unconformity. (from Deptuck and Altheim 2018).

Sedimentation and salt tectonics

Widespread precipitation of Late Triassic and earliest Jurassic salt (mainly halite) took place during the latter stages of rifting between Nova Scotia and Morocco, resulting in two distinct periods of Mesozoic salt accumulation, separated by ~201 Ma basaltic lava flows associated with the Central Atlantic Magmatic Province (CAMP) (McHone 1996; Marzoli et al. 1999; MacRae and Pe-Piper 2022). Narrow folded or pillowed tongues of primary salt occupied the axes of numerous rift basins in region A, including the Orpheus, Mohican, Oneida (e.g. pink intervals in Figure 5), Acadia, Abenaki, Wyandot, and Erie grabens (Deptuck and Altheim 2018; Hanafi et al. 2022). Deformation of the primary salt layer took place mainly through sediment loading (e.g. mouth of the Orpheus Graben), though local basement inversion also played a role in some grabens (e.g. in the Mohican and Oneida grabens).

Both the primary salt layer and underlying syn-rift strata extend into areas seaward of the LaHave Platform, where post-rift mobilization of salt played a more important role in the structural and stratigraphic development of the slope. The boundaries between regions B, C, D, and E coincide with abrupt lateral changes in the timing and volume of sediment delivered to the margin and the resulting timing and style of salt expulsion (Table 4) (Shimeld 2004; Albertz et al. 2010; Deptuck and Kendell 2017).

Jurassic and Cretaceous seismic markers like J163, J145, K125, and K94 roughly match the top and base of major

siliciclastic or carbonate lithostratigraphic units like the Mic Mac/Abenaki, Missisauga, and Logan Canyon formations that aggraded and prograded above the shelf (Welsink et al. 1989; Wade and MacLean 1990). Direct deepwater ties from Monterey Jack E-43 and Cheshire L-97 also make it possible to correlate the seismic stratigraphic framework onto the slope seaward of the salt basin, and ultimately towards the northeast. This provides an additional constraint on the age of seismic markers on the eastern Scotian Slope (where there is very little well calibration, and where correlations across the shelf are hindered by densely spaced listric faults and poor seismic imaging).

Middle Jurassic and Cretaceous thickness maps show the strong asymmetry in stratigraphic thickness, where along-strike sedimentation rates can vary by more than an order of magnitude (Figures 6, 7). In general, the western parts of the margin (regions B and C) were sediment-starved, with low sedimentation rates focused in numerous relatively stationary (vertically-subsiding) salt-withdrawal minibasins. Except for a small salt tongue canopy that extends ~25 km seaward of the primary salt basin off Georges Bank (associated with the 'Shelburne Delta'), most of the salt diapirs (stocks and walls) in regions B and C are located immediately above the primary salt basin from which they were expelled.

In contrast, the eastern parts of the margin (regions D and E) were sediment-rich, with an overall westward migration and seaward progradation of the thickest parts of the Mic Mac, Missisauga, and Logan Canyon

formations (Figures 7, 8). Shifts in these major depocenters closely track the sequential development of laterally extensive "bands" of listric growth faults on the shelf (e.g. Figures 6d to g), and a wide spectrum of salt-related deformation styles on the slope, including seaward-leaning salt feeders and extensive amalgamate-ed salt stock canopies or salt nappes that today are located up to 150 km seaward of the original primary salt layer (e.g. Figures 3, 6; Deptuck and Kendell 2020; 2022).

In Figure 9 - a compilation of six approximately strikeoriented seismic profiles across the middle slope - the asymmetry in sediment accumulation in clear, as is the westward migration of Jurassic and Cretaceous depocenters. Similarly, Figure 11 located seaward of the salt basin shows that the along-strike asymmetry in sedimentation continues even on the continental rise, ultimately reflecting broadscale shifts in depositional environments on the shelf.

Table 4. Summary of the tectonic setting, salt tectonic style, and dominant sedimentary setting in each of the six geographic regions evaluated in this study.

Region	Tectonic setting	Salt tectonic style	Sedimentation				
A. LaHave Platform	 Stable platform with thick continental crust Seaward half broken by 2-5 km deep Triassic extensional rift basins above midcrustal shear zones Prominent eroded horst blocks separate 	 Primary "syntectonic" salt was deposited in distal rift basins in the latter stages of rifting, probably continuing into the early postrift (e.g. Orpheus, Mohican, Oneida, Acadia grabens) Mainly salt pillows and folded interlayered salt and fine-grained dolomitic shale 	 Rift basins containing immature siliciclastic sediment, with landward parts heavily eroded along post-rift unconformity Pass up-section into salt and interlayered salt and dolomitic shale 				
	some rift basins Slow post-rift subsidence 		 Post-rift succession varies from carbonates to siliciclastics 				
B. West Shelburne Corridor	 Landward parts coincide with abruptly tapered 'necked' crust seaward of heavily eroded Yarmouth Arch 	 Up-slope listric faults pass down-slope into thin-skinned shortening Small salt-tongue canony expelled in 	 Region of the Middle Jurassic to Cretaceous 'Shelburne Delta' Volumetrically much smaller than Sable Island Delta, but strong indications of progradation 				
	• Magmatic part of the margin, with SDRs seaward of salt basin	Middle to Late Jurassic					
C. Shelburne Corridor	 Landward parts located above necked crust; seaward parts located above more rapidly subsiding hyperextended crust 	• Up-slope thin-skinned gravity gliding above primary salt basin; downslope shortening and minibasin down-building	 Region generally sediment starved in Middle Jurassic through Cretaceous Aggradation of Jurassic carbonate bank (Abenaki Fm) with sharp bank edge and porous reef margin Generally condensed Lower Cretaceous strata ('Roseway unit') 				
	 Good imaging of candidate reflection Moho ('M-marker') Outer band of ECMA coincides with outer edge of primary salt basin 	 Mainly vertical salt diapirism, with expelled salt bodies located immediately above primary salt layer 					
D. Sable-Abenaki Corridor	Landward parts located above necked crust; seaward parts located above hyperextended crust	 Jurassic salt loading, followed by Cretaceous progradation and emplacement of salt canopies on shelf and slope 	Transition between sediment starved carbonate bank and voluminous Upper Jurassic mixed siliciclastics and				
	 Abenaki and Sable depocenters separated by Missisauga Ridge, a prominent horst block Basement mapping beneath deepest 	 Amalgamated salt stock canopies in west, and salt nappe canopy in east Turtled minibasins both above primary salt and canopy salt 	carbonates • Voluminous Lower to mid-Cretaceous sedimentation ('Sable Island Delta') after westward shift in sediment				
	parts of Sable Subbasin uncertain due to poor seismic imaging	 along-strike alternation between roho- style salt-based detachments and expulsion rollovers 	delivery (in response to Avalon Uplift) Primary reservoir interval for known discoveries on the shelf 				
E. Huron Corridor	 Landward parts located above abruptly necked crust Seaward boundary of salt basin corresponds to South Griffin Ridge, with hyper-extended crust further seaward still 	 Most prominent salt tectonics took place in the Middle to Upper Jurassic on the slope, during emplacement of a large salt-based detachment (Banquereau Synkinematic Wedge; BSW) 	 Voluminous Middle to Upper Jurassic sedimentation associated with "Mic Mac Delta" Westernmost Laurentian Subbasin included in this region where Mohican siliciclatics were thickest 				
F. Sydney Basin	Basin perched above thick sutured crust cut by multiple oblique strike-slip reactivate terrane boundaries	Windsor Group salt diapirs and folds; initial salt loading took place during Mabou deposition Salt distribution strongly impacted by	Pre-salt Horton overlain by Windsor and variably loaded by post-Windsor siliciclastics (e.g. Mabou Group and younger Pennsylvanian strata)				
	truncated along Quaternary Unconformity	Sair distribution strongly impacted by Horton basement faulting Probable strike-slip deformation of salt					
		bodies					

CNSOPB Geoscience Open File Report 2024-001MF 111 p.

Figure 6. Line drawings of representative composite seismic sections across the study area. See table 4 for summary of tectonic setting, salt tectonic style and depositional environments. Line locations shown in figure 3. Adapted from Deptuck and Kendell (2017). Transect H is from Kendell et al. (2017). Black squares highlight different trapping styles described in this report; see letter key in Figure 19 for trap types.

The sharp contrast in Middle-Late Jurassic sediment thickness in Figure 7i, 9i, and 11i reflects abrupt lateral changes in depositional environments. Carbonatedominated sedimentation in region C took place as a rimmed carbonate platform aggraded (Abenaki Formation) on the shelf, versus ramp-style mixed carbonate-siliciclastic sedimentation in region E, where the much thicker Mic Mac Formation aggraded and prograded above the J163 marker (across the eastern Scotian Shelf; Wade and MacLean 1990). The sedimentstarved carbonate foreslope in region C contrasts sharply with the 5 to 6 km of uncalibrated slope strata in region E where a large salt-based detachment formed (known as the Banquereau Synkinematic Wedge - BSW; Shimeld 2004; Ings and Shimeld 2006; Deptuck et al. 2014) (see Table 4). Several kilometers of Mic Mac-equivalent sediment also accumulated in the eastern reaches of region D at this time (in the Abenaki and Sable Subbasins), expelling vertical to seaward-leaning salt feeders that locally amalgamated into small salt-stock canopies before the end of the Jurassic.

The start of Cretaceous sedimentation is marked by an abrupt 125 km westward shift in the thickest parts of the Missisauga-equivalent isopach (Figures 7ii, 9ii). This shift probably reflects the development of the Avalon Uplift that took place near the end of the Jurassic in response to rejuvenated rifting between the Grand Banks and Iberia (Jansa and Wade 1975). Erosion of the Avalon Uplift produced a prominent angular unconformity on the eastern Scotian Shelf and southern Grand Banks (Figures 7, 10). Erosion and stratigraphic thinning imply that it remained a positive topographic element through at least the Early Cretaceous (Deptuck et al. 2014).

Whereas the primary salt budget was largely expended by the end of the Jurassic in the Huron Subbasin (that largely welded-out as the BSW formed), the primary salt layer in the Sable Subbasin had not yet been depleted. As such, progradation of the Sable Delta across the Sable Subbasin initiated a new generation of Cretaceous saltrelated deformation that ultimately emplaced the younger 'Sable Slope Canopy' on the central Scotian Slope (Kendell 2012). Up to 3.5 km of siliciclasticdominated fluvial-deltaic sediment of the Missisauga Formation (and its distal equivalents) accumulated in region D and the western parts of region E, as the Sable

Figure 8. (above) General litho-chronostratigraphic chart for the Atlantic Scotian margin. Note that there are lateral variations in the thickness and lithology of several units. For example, the Abenaki Fm is replaced along the eastern parts of the margin by the Mic Mac Fm, composed of thicker mix intervals of carbonates and siliciclastics. Similarly, the Missisauga Fm passes towards the west into condensed carbonates with minor siliciclastics of the "Roseway Unit".

Figure 9. (next page) Composite transect compiled from six representative strike-oriented seismic profiles across the Scotian Slope. Note the overall westward migration of Mic Mac- to Missisauga- to Logan Canyon-equivalent slope successions. Also note that there is a ~125 km gap between the right two transects, where Jurassic and Cretaceous strata are complexly deformed above and below the allochthonous salt of the Sable Slope Canopy (Kendell 2012). Profile locations shown in Figures 7 and 28.

Figure 10. GSC multichannel seismic profile crossing the Avalon Unconformity on the southern Grand Banks (line location shown east of the map in Figure 1). Carboniferous, Triassic and Jurassic strata were eroded below the unconformity, with Mid to Late Cretaceous strata absent or thinning above it.

Island Delta prograded towards the south and west, driving salt-related deformation. In addition to diverting rivers towards the Sable Subbasin, the Avalon Uplift may also have shed sediment into deepwater (Jermannaud et al. 2023). Thick turbidite-successions accumulated on the slope in front of the early Sable Canopy, but also in front of the older BSW in region E, buttressing and stalling its seaward advance (Deptuck and Kendell 2017). At the same time, the pre-Albian western Scotian Shelf remained sediment-starved in the Early Cretaceous, with condensed platform carbonates and minor siliciclastics aggrading above the shelf ('Roseway Unit' of Wade and MacLean 1990; Moscardelli et al 2019) and slope of region C.

The westward and seaward march of the Sable Island Delta continued into the mid-Cretaceous, as up to 3.5 km additional Canyon-equivalent of Logan strata accumulating in region D (Figure 7iii). On the slope, expulsion rollovers and roho systems continued to grow as seaward-leaning salt tongues or amalgamated saltstock canopies developed (e.g. Figure 6; Sable Slope Canopy of Kendell 2012). Further east in region E, where salt expulsion had already taken place in the Jurassic, the thickest parts of the Logan Canyon Formation reactivated the headward parts of the BSW. Up-slope thin-skinned extension across these listric faults drove down-slope shortening in the now-buttressed BSW, generating salt-cored buckle folds along its perimeter (forming the "Banquereau fold-belt" described later; Ings and Shimeld 2006; Deptuck et al. 2014).

The Logan Canyon Formation prograded as far west as the eastern parts of region C, where the delta built across the carbonate platform in the Late Albian, reaching its maximum regression sometime in the Cenomanian (Deptuck and Kendell 2020). Furthest west, in region B, a subtle increase in sediment thickness is detected in Late Jurassic and Cretaceous isopach maps in Figure 7, where several regressive-transgressive cycles record delta progradation across growth faults on Georges Bank. These are associated with progradation of the 'Shelburne Delta', that was intermittently active in the Middle to Late Jurassic and the Early to mid-Cretaceous (Beicip-Franlab et al. 2015).

The Upper Cretaceous to Early Eocene succession above the Logan Canyon Formation (and its equivalents) marks a general lithological change to pelagic chalks and marls of the Petrel Member, Wyandot Formation, and informal 'Ypresian Chalk' (Fensome et al. 2008; Weston et al., 2012) that accumulated on the shelf and slope between the K94 and T50 markers. Chalk facies pass landward into highstand deltas with clinoforms that first reached the continental shelf edge in the Maastrichtian landward of region C and in the Paleocene/Eocene along region E (Fensome et al. 2008).

The isopach map in Figure 7iv shows the southern and northern delta lobes on the shelf nicely. This situation is similar to equivalent strata in the Jeanne d'Arc Basin off Newfoundland where, despite the long period of mainly elevated eustatic sea level in the Late Cretaceous, landward clastic sediment sources eventually prograded

across older pelagic carbonates like the Petrel and Wyandot Formations (Deptuck et al. 2003). On the slope, the K94 to T50 chalk-bearing succession is thickest in areas C and D, where it is heavily dissected by Cenozoic younger canyon systems (Figures 7iv, 9iv, 11iv) (Deptuck and Campbell 2012).

Paleozoic Sydney Basin

The Sydney Basin forms a depocenter between Cape Breton Island and Newfoundland where up to 7 km of mainly Carboniferous to Permian strata accumulated beneath the modern Laurentian Channel (Figure 12). Key seismic markers through the Syndey Basin were described in Kendell et al. (2017) and include top pre-Carboniferous basement, the Mississippian C352 (top Horton Group) and C325 (near top Windsor Group) markers, and the Pennsylvanian C308, C303, and C300 markers (within the Morien to Pictou Group). Although there is no well calibration for pre-C325 markers in the offshore Sydney Basin, marker age is inferred from onshore exposures of Carboniferous strata on Cape Breton Island and from studies in other parts of the Maritimes Basin (e.g. Durling and Marillier 1990; 1993).

The C352 marker is an unconformity that caps a faulted mixed-Horton Group succession deposited above rifted basement. Horton comprises mainly siliciclastics deposited in intermontane, alluvial to shoreline and

lacustrine settings. They fill a series of isolated to interconnected northeast-trending rift basins that probably formed during or shortly after the middle-late Devonian Acadian orogeny (Pascucci et al., 2000) (Figure 6f). Rift basins pass up-section into a marine succession of mixed evaporites, limestones, dolomites, and finergrained siliciclastics of the Windsor Group that accumulated in the remnant relief above Horton fault blocks. The near-top Windsor C325 maker, carried above salt diapirs in the Sydney basin, lies just below the deepest penetrated strata in the North Sydney wells. The C325 marker is overlain by a folded shallow-marine to continental-fluvial-lacustrine succession of the Mabou Group, accommodated in part through expulsion of underlying Windsor evaporites (see also Figure 10 for a similar situation on the southern Grand Banks). The succession passes upwards into Pennsylvanian strata that include braided to meandering fluvial sandstones in the Morien Group (that are gas-charged in the North Sydney wells), and alluvial deposits of red mudstones and sandstones of the late Pennsylvanian to early Permian Pictou Group that is capped by the C300 marker (Kendell et al. 2017, and references therein). Though Late Carboniferous loading of underlying Windsor units probably initiated salt expulsion, the east-west orientation of folds and lack of thinning above some fold crests, suggests some of these folds formed during inversion that took place in the Permian or later, in resp-

Figure 12. Total sediment thickness of the Sydney Basin (from seafloor to top Basement) (from Kendell et al. 2017) onse to strike-slip and/or reverse reactivation along older Acadian faults (Kendell et al. 2017).

Potential Reservoirs and Risking

Reservoir expectations in each of the six regions defined in this study vary both spatially and in different stratigraphic intervals. Four main potential reservoir intervals are discussed below: (i) Late Paleozoic clastics and carbonates; (ii) Middle to Upper Jurassic clastics and carbonates; (iii) Lower to middle Cretaceous clastics; and (iv) Upper Cretaceous to Paleogene chalks.

Late Paleozoic

Reservoir distribution is poorly understood in region F. Both carbonates and siliciclastics could form viable reservoirs in Carboniferous strata, and in similar(?) successions in locally preserved remnants of Carboniferous basins in region A (e.g. Figure 5). Beneath Windsor Group rocks, sandstone units of the Horton Group are potential reservoirs, with Horton shales potentially serving as intra-formational seals for this play.

The Horton Group was not penetrated by the Sydney Basin wells but is a proven reservoir elsewhere in the Maritimes basin, often needing reservoir stimulation. There is onshore oil and gas production at the Stoney Creek field and gas production at the McCully field, both in New Brunswick. While the Horton sandstones have generally low to fair porosities they are able to achieve commercially viable production rates by reservoir stimulation.

The Windsor Group's Gays River Formation reefs may also be a potential reservoir for Horton generated hydrocarbons. These reefs would be localised, and potentially difficult to identify on the current seismic data. No carbonate reefs were encountered in the two wells but are inferred to be present in the basin. Onshore, these reefs are common where the Gays River Formation oversteps basin bounding topography.

Above Windsor and Horton group strata, both North Sydney wells have proven gas charge in Late Carboniferous fluvial sandstones. In the North Sydney F-24 well, two zones of the South Bar and Mabou formations were acidized and fractured in an attempt to flow gas to the surface. Porosity in the tested South Bar interval ranged of from 4 - 12%, with most values below 10%. Average porosity in a five meter sand in the Mabou Formation was 11%, but it did not flow when tested. The Sydney Mines, South Bar and Mabou formations appear to contain more porous sandstones in the P-05 well, though these intervals were not flow-tested. While gascharge zones in the Sydney Basin wells appear to have poor reservoir properties (average net pay porosities all below 12%), the calculated net pay in these wells should be used with caution due the quality and vintage of available log data. The net pay assigned in this assessment allows for a somewhat more optimistic best case reservoir scenario (see Table 5), reflecting the potential for local reservoir improvements, sample bias, and uncertainties in data quality.

Mesozoic

Reservoir distribution is better understood in the Scotian Basin, where regional seismic mapping, tied to wells, has shown clear patterns in the distribution and style of mid-Jurassic to Cretaceous shelf depositional systems and their linkage to sparsely calibrated deepwater strata (e.g. Cummings et al. 2005; 2006; Kendell and Deptuck 2012). We use the combination of sediment thickness (e.g. Figure 7), sharply contrasting seismic facies (e.g. Figures 9, 11, 13, 14), and limited well results, to help guide reservoir expectations and risking (Figure 17).

Middle to Late Jurassic

The most important Middle to Upper Jurassic reservoirs are likely to be associated with carbonates in region C and siliciclastics in regions B, D, and E. Of these areas, the thickest successions are found in the eastern parts of region D and throughout region E (Figures 7, 9, 10). Here, shelf wells encountered a complex mixture of silciclastics and shallow marine carbonates corresponding to the Mic Mac Formation (Wade and MacLean 1990). These sediments prograded across the continental shelf, starting in the Callovian, continuing intermittently through to the Tithonian (Deptuck et al. 2014). Calcite and/or silica cementation in some shelf wells has led to poor porosity preservation, increasing geological risk for potential Jurassic reservoirs in regions D and E.

There is no direct well calibration for Middle to Upper Jurassic strata on the slope in regions D and E, and reservoir expectations within the BSW on the slope are uncertain (Figures 6f, 9i). The only deepwater wells that calibrate the J163 to J145 interval are located on the sediment-starved slope of region C, more than 350 km to the southwest. Cheshire L-97/L-97A drilled by Shell in 2015 encountered mainly calcareous shales, marlstones, and limestone, on the slope seaward of the sedimentstarved Jurassic carbonate bank (see Deptuck and Kendell 2020). As such, Cheshire is unlikely to be representative of the substantially thicker timeequivalent strata on the eastern Scotian Slope. For example, the long-term sedimentation rate for Callovian to Tithonian strata in Cheshire L-97/L-97A (~605 m section) is roughly 4 cm/ky, whereas the equivalent section beneath the Tantallon M-41 well (not penetrated, but nicely imaged on PSDM seismic profiles) is 4300 m thick, yielding a much higher sedimentation rate of ~28.7 cm/ky (without accounting for compaction). In fact, the eastern Scotian Slope records the thickest Middle to Upper Jurassic strata anywhere along the Scotian margin (Deptuck and Kendell 2017), and as such is likely to contain a significant siliciclastic component in region E and the eastern parts of region D (Figures 7, 9, 10).

Shallow marine carbonates may have preferentially accumulated on the shelf during periods of high sea level with siliciclastics and perhaps resedimented carbonates preferentially accumulating on the slope during periods of low sea level. The strong, continuous "hard" reflections (downward increase in impedance) within the BSW may correspond to impedance contrasts between thicker carbonates (pelagic or resedimented) and siliciclastics (Figures 7i, 9i, 11i). They could also correspond to calci-clastic submarine fans shed from the mixed clastic-carbonate systems on the shelf. Secondary porosity development could improve the reservoir potential of some deeply buried carbonates, but this too carries a high degree of uncertainty.

Lower to middle Cretaceous

The most prolific proven gas, condensate, and oil reservoirs in the Scotian Basin are Lower Cretaceous fluvial-deltaic to shoreface sandstones of the Missisauga and Logan Canyon formations, penetrated in numerous shelf wells in regions D and E (Cummings and Arnott 2005; Smith et al. 2014). The presence of fluvial-deltaic systems on the shelf, particularly those deposited during periods of forced regression, favour reservoir development on the slope (Jermannaud et al. 2023; Scotian Basin Integration Atlas 2023). The Crimson, Annapolis, Newburn, and Aspy wells in the distal Sable Subbasin (region D) all encountered turbidite reservoirs with average net pay porosity ranging from 14 to 19% (Kidston et al. 2007; Kendell et al. 2016; Kendell and Deptuck 2020). All but Crimson also encountered significant gas/condensate shows (Table 3). Likewise, the scarcity of reservoirs in the Cheshire and Monterey Jack wells in the Shelburne Subbasin (region C) is consistent with the absence of Lower Cretaceous fluvial-deltaic systems on the shelf (Figure 7ii). It is also consistent with the much thinner sediment accumulation on the shelf and slope in region C compared to regions D and E (Figure 9, 11, 13, 14), resulting in significant temporal and spatial variations in reservoir risking (see Figure 17).

The complicated salt tectonics in the Sable Slope Canopy of region D significantly hinders finer-scale seismic interpretation, especially for Cretaceous strata below salt. The absence of salt overhangs above Cretaceous slope strata in region E, however, makes more detailed

Figure 13. Comparison of Lower Cretaceous sediment thickness on the slope at Cheshire L-97 in region C and a representative seismic section from the slope in region E. See Figure 9 for line location.

CNSOPB Geoscience Open File Report 2024-001MF 111 p.

Figure 15. Stratal architectures associated with unidirectional migration of slope strata in both sediment-starved (top two images) and sedimentrich slope segments (bottom image). Condensed strata in region C (Shelburne Subbasin) are strongly influenced by bottom current reworking, with only minor indications that coarser clastics accumulated anywhere but along single-loop soft reflections along channel axes (yellow); (upper image) upper slope near Cheshire and (middle image) middle slope near the Monterey. (bottom) – Closeup of seismic profile across the middle slope in region E, where much more complex seismic facies are recognized, believed to be associated with bottom current reworking of a slope with frequent down-slope sediment transport. Location shown in Figure 9.

seismic facies analysis possible. Loop-scale interpretations reveal clear differences is seismic facies in region E compared to region C (Figures 13, 14, 15). Seismic facies are generally more complex on the eastern Scotian Slope, with laterally discontinuous clusters of bright and dim reflections. Some bright amplitude reflections can be correlated up to 70 km down the slope on 3 to 6 km spaced 2D seismic profiles, forming elongated curvilinear corridors. They are interpreted as 2 to 4 km wide sand-prone submarine channel-belts (vellow transparency in Figures 14) flanked by lower amplitude muddy wedge-shaped overbank deposits. Several of these channel-levee systems continue landward, beneath the Sable Slope Canopy in region D, where poor subsalt seismic imaging precludes mapping. They imply sediment was transported both through the Sable canopy system in region D and down the slope further east in region E.

Tantallon M-41 – the only well to sample slope strata in region E (and the only slope well east of Crimson) encountered just ~10 m of gas charged sands in Lower Cretaceous slope strata (Goodway et al., 2008). Conventional cores from the well, however, show hundreds of stacked sharp-based thin-bedded turbidites composed of very fine-grained to medium-grained sandstone (Figure 16; see Piper et al. 2010). These sedimentary structures are consistent with fine-grained turbidites deposited on levees adjacent to submarine channels (e.g. Piper and Deptuck 1997). Likewise, more recently acquired 3D seismic data (Stonehouse 3D survey) shows that the upper slope immediately east of Tantallon consists of numerous narrower channel-belt corridors (see Goodway et al. 2008), rather than widespread sheet-sands. This may indicate that the limited reservoir development at Tantallon M-41 reflects poor well positioning relative to the location of sandprone channel-belts, rather than the wholesale absence of deepwater reservoirs on the slope in region E.

Further seaward, channel-belts increasingly interfinger with more continuous bright amplitude, occasionally shingled, soft reflections (downward decrease in impedance), identified in green in Figures 14 and 15. They range from 10 to 15 km wide, up to 33 km long, and can cover areas up to 290 km². Their distribution and character are consistent with submarine lobe "sheet sands" deposited at the mouths of aggradational submarine channels or in response to channel-levee avulsions. Based on these observations, we anticipate some lateral confinement of turbidite channel corridors on the upper slope (i.e. where Tantallon M-41 was drilled), with a progressive downslope decrease in confinement where more laterally continuous turbidite sands were deposited in the deepwater parts of regions D and E (see also Piper and Normark 2001).

Some of the complicated stratigraphic architectures in Figures 14 and 15 are probably the consequence of synchronous bottom current reworking as Cretaceous sediment was exported from the shelf and down the slope (Deptuck and Kendell 2020; Rodriguez et al. 2022). Up-current, "unidirectional" migration of deepwater deposits are increasingly recognized as products of sustained bottom current reworking (e.g. Gong et al. 2013; Fonnesu et al. 2020). The stratigraphic architecture of sediment-starved slope segments (like region C) is dominated by condensed strata displaying unidirectional migration (Figures 13, 15). In contrast, the stratigraphic architecture of sediment-rich slope segments (like regions D and E), is more variable, with many channellevee systems showing unilateral migration (on the upper slope; e.g. Inset B), and other's not (e.g. inset A, Figure 14). This might reflect the increased terrigenous supply in regions D and E that can interrupt, mask, or bury geomorphic products associated with sustained bottom current reworking (see comparison in Figures 9, 13, 14). Whether such bottom current reworking ultimately degrades or improves reservoir properties is not yet clear, but they are a noteworthy complication compared to more traditional turbidite systems.

Upper Cretaceous to Paleogene

Like the Jeanne d'Arc Basin on the Grand Banks, and in the North Sea. Cenomanian to Eocene strata in the Scotian Basin include widespread pelagic chalk accumulations that have potential to form hydrocarbon reservoirs. For example, the Eagle gas discovery on the shelf of region D consists of 52 m of net gas pay in porous Upper Cretaceous chalks of the Wyandot Formation (in the Sable Subbasin). Likewise, 50 m of net gas pay was found in Wyandot chalks folded above a salt diapir in the Primrose Significant Discovery (Smith et al. 2014). neither of these were commercial Although developments, they demonstrate that chalks can form hydrocarbon reservoirs in Nova Scotia's offshore. The chalk series is located mainly between the K94 and T40 markers. In deepwater, the succession is thickest along

Example of a channel-levee system located a few km downslope from Tantallon M-41

Fine grained, thin-bedded levee turbidites, capped by bottom current reworked starved ripples

Figure 16 (top) Representative seismic profile across a unidirectionally migrated channel-levee system seaward of the Tantallon M-41 well location (seismic imaging is poor at the well location). We infer that the well missed the more sand-prone channel corridors, and instead sampled mainly inter-channel overbank deposits. Core photos (bottom) support this interpretation, showing hundreds of stacked fine-grained turbidites diagnostic of levee depositional settings.

the western parts of the margin (regions B and C), and comparatively thin in region E on the eastern Scotian Slope. On the shelf, the Wyandot Formation chalks are thickest in region E (see Figures 7iv, 9iv, 11iv). The generally low matrix permeability of chalk reservoirs remains a key risk element of Upper Cretaceous to Paleogene chalks, however these reservoirs may be able to achieve commercially viable production rates if stimulated by fracking. Resedimented chalks appear to form more favourable, higher permeability reservoirs, though many complex factors affect reservoir quality (Megson and Tygesen 2005). Although there is strong evidence for sediment failures involving chalks on the shelf where 3D seismic is available (in the Sable Subbasin; Smith et al. 2010), the associated mass transport deposits may be mixed with other sediment types (like shale from coeval prodelta clinoforms). This also applies to the widespread Montagnais mass transport deposit (see Figure 11) that was triggered by the Early Eocene Montagnais bolide impact on the western Scotian Shelf (Deptuck and Campbell 2012; Deptuck and Kendell 2020). It undoubtedly contains resedimented pelagic carbonates, but with significant uncertainty about its overall composition and viability as a hydrocarbon reservoir.

Potential Source Rocks and Risking

Regions A to E

Figure 18 shows the composite play-level risk map used to guide source rock risking in regions A to E. At the play level, risking considers both the presence and maturity of source rocks. One proven source rock interval (Tithonian) and one potential source rock (Pliensbachian) contribute to this map. Most of the discovered hydrocarbons along the Scotian margin have been tied to Tithonian-Kimmeridgian Mic Mac/Verrill Canyon Formation deltaic shales containing a mix of Type II to III organic matter (Fowler 2020). Up to 5% TOC type II to III source rocks were encountered in a 250 m thick interval of Tithonian strata at Louisbourg J-47 in region E (OETR 2011). They are interpreted to be linked to the ample supply of terrigenous material to the slope in the Upper Jurassic. As such, the Upper Jurassic thickness map was used as a guide, with green areas corresponding mainly to regions D and E where Upper Jurassic strata are thickest and petroleum system modelling shows it is mature. These are also areas where wells have encountered trapped gas, condensate, or oil.

There has also been speculation about a deeper oilprone Lower Jurassic source rock along the Scotian margin (OETR 2011; Bishop 2020) and southern Grand Banks (Fowler 2019). Geochemical typing of oil samples in wells along the rift-shoulder (e.g. Mic Mac J-77) provide the closest evidence for a deeper (Lower Jurassic?) marly restricted-marine source rock (Fowler 2020), but it has not been demonstrated to extend onto the slope. Any leads on the slope in regions B or C require this older source rock because Tithonian strata are unlikely to be mature in these areas. If a Lower Jurassic source rock is present beneath the eastern Scotian Slope, its deep burial depth probably means it is overcooked and gas-prone. Yellow areas on the map (Figure 18) correspond to regions where the Tithonian source rock interval is only marginally mature, or where a deeper Lower Jurassic source rock, if present, is likely to be mature (see Scotian Basin Integration Atlas 2023). At the prospect level, source risking includes consideration of expulsion timing and charge access. For example, Lower Jurassic strata are absent in some areas, with thickness maps forming bulls-eye "pods" associated with sedimentation in early minibasins (see Deptuck 2020). Likewise, some plays lie above allochthonous salt, while the source rock lies below – both scenarios may create charge access challenges for traps above salt.

Other potential Mesozoic source rocks

The deepwater equivalent of the Callovian shale-prone Misaine Member has also been proposed as a potential source rock (OETR 2011). A section with elevated TOC up to 1.24% was encountered at Cheshire L-97/L-97A - the only well to penetrate this interval on the Scotian Slope (SW of the Sable Subbasin) – but the interval is too thin to source significant volumes of hydrocarbons (Fowler 2019). Given that the BSW records the much higher Callovian to Tithonian sedimentation rates (605 m of strata at Cheshire L-97/L-97A versus > 4,000 m of strata in the BSW), a Callovian source rock with elevated intervals of terrestrial-derived organic matter is more likely to be present on the eastern Scotian Slope, if anywhere. The onset of the BSW on the slope has been linked to a period of hinterland erosion and abrupt seaward progradation above the Scatarie Member on the eastern Scotian Shelf (Deptuck et al. 2014), placing terrestrial-derived organic matter at deeper stratigraphic levels within the BSW. The dominance of terrestrialderived organic matter in these potential clastic source rocks suggests they are likely to be gas- and condensateprone throughout regions D and E.

Brown (2014; 2015) suggested that lacustrine oil-prone source rocks could also be present in the deeper, unsampled fill of Triassic rift basins off Nova Scotia. Similar lacustrine source rocks are known to be present in Mesozoic rift basins exposed on land in the northeastern United States. They formed at more humid paleo-latitudes that favoured the accumulation of lacustrine source rocks (Olsen 1985; Post and Coleman 2015). Off Nova Scotia, older Carnian strata may have accumulated at similar paleolatitudes, within or immediately adjacent to the tropic belt, in wet climatic conditions more favourable for the creation (and preservation) of organic matter in long lived lakes (Brown 2014).

The absence of source rock intervals in Sambro I-29 (the only well to test the pre-salt synrift succession west of Orpheus Graben), however, makes this interpretation challenging for the early synrift strata on the LaHave Platform, unless the red beds it encountered are not representative of basinal early syn-rift depositional environments (Deptuck and Altheim 2018). We should note that the well did not reach basement, so the composition of earliest syn-rift successions remain unknown. Other source rock intervals may be more likely. A number of oil, condensate, and gas discoveries have been made in similar rift basins in Morocco (e.g. Meskala field; Morabet et al. 1998; Mader et al. 2017), which was contiguous with the LaHave Platform before the Atlantic Ocean formed. In these basins, pre-rift successions (Silurian or Carboniferous) are the most likely source intervals for hydrocarbons in Triassic syn-rift fluvial reservoirs rotated above basement blocks, in turn sealed by late syn-rift salt (Tari et al. 2017).

Late Paleozoic source rocks

Based on source rocks present in onshore areas of Nova Scotia and New Brunswick (see Langdon and Hall 1994, and Dietrich et al. 2011, and references therein), the offshore Sydney Basin (region F) also has numerous potential Carboniferous source rock intervals. The lowest source rock risk is found in areas where both Horton Group lacustrine source rocks and Windsor Group

Sydney Basin source rock play risk (presence and maturity): Areas where both Horton and Windsor/Mabou SR are possible Areas where post-Horton SR are possible High SR presence/maturity risk 46°N 76 200 58°V 42°N В 200 km 90° Scotian Basin source rock play risk (presence and maturity): 62°W Interpreted region of proven mature Tithonian SR Areas where Tithonian SR is marginally mature or areas with potential Pleinsbachian SR Areas likely requirign some other source rock

Figure 18. Composite play-level risk map used to guide source rock presence and maturity in regions A to E. At the prospect level, risking also includes consideration of hydrocarbon migration challenges (e.g. some plays lie above allochthonous salt, which could impede migration of hydrocarbons from sub-salt source rocks. Modified from the Scotian Basin Integration Atlas (2023).

McCumber marine carbonate source rocks are possible (Figure 18; Kendell et al. 2017).

The lacustrine shales of the Horton Formation, as sampled from onshore Nova Scotia basins, are oil-prone with type I and type II signatures and TOC averaging 6%. (Fowler and Webb 2017). The lowermost section of the marine Windsor sequence contains organic-rich intervals of the McCumber Formation. Samples of this interval from onshore wells suggest TOC ranging from 1.2 to 2.6%. (Mossman 1992; Fowler and Webb 2017). Minor contributions may also be expected from the organic shales of the Mabou Group, and the widespread coal measures present in the Sydney Mines Formations penetrated in a number of offshore core holes (see Shimeld and Deptuck 1998). Table 5.1 of Kendell et al. 2017 provides a thorough summary of the potential source rock intervals, their thickness, depositional environment, TOC and hydrogen index within Sydney Basin.

Play-type definition

Each geographic region contains between three and twelve play types, for a total of 44 plays (Table 5). The total area for each of the 44 play types was determined using geological knowledge derived from well data and regional reflection seismic mapping, to constrain areas where a specific play type could exist (for example, 'a supra-canopy turtle' can only exist where there are minibasins above salt canopies). Each play types may be present in more than one geographic area, though potentially with different associated play and prospect level geologic risk. The proportion of a given play area 'under trap' was determined individually for each play type in each geographic region, primarily from cumulative lead mapping on depth-converted regional seismic surfaces, then summing the areal trap coverage for a given play type in each region. Because there is some overlap in play types (e.g. a salt-cored fold trap that is also pierced by a salt diapir with potential three closure), a high degree of care was taken to avoid 'double-booking' any of the play types and associated area under trap. Seismic markers were gridded at 200 x 200 m spacing, and depth-converted using the velocity model in Appendix 5 of the Scotian Basin Integration Atlas (2023) for regions A to E, and the velocity model of Kendell et al. (2017) for region F. In most cases a +/-10 to 20% error bar was used to account for gaps in seismic data coverage or uncertainties associated with depth conversion. Larger error bars (up to 30%) were used for a small number of play types with larger trap size uncertainty, like sub-canopy cut-off traps or stratigraphic onlap traps that are more subtle in nature.

Figure 19. Schematic strike (top) and dip (bottom) sections showing examples of the range of potential traps on the Scotian shelf and slope. Green colours correspond to Cretaceous traps, blue to Jurassic traps, orange to Triassic traps, and black to Carboniferous traps.

Table 5. Key input parameters for each play type across the six geographic regions included in this study.

	Discount Play Area		Net Reservoir		Porosity				
A. LaHave Platform		(P100/P50/P0)		(P100/P50/P0)			(P100/P50/P0)		
a. Pre-salt Triassic syntectonic rotated fault blocks & inversions	506	625	756	10	15	30	0.1	0.18	0.22
b. Carboniferous(?) post-Windsor turtles	94	131	173	5	10	30	0.1	0.14	0.18
c. Carboniferous(?) pre-Windsor fault blocks & inversions	164	203	245	5	10	30	0.1	0.14	0.18
d. Cretaceous fault rollovers and forced folds	401	1002	1323	10	20	50	0.1	0.2	0.26
B. West Shelburne Corridor									
a. Pre-salt Triassic syntectonic rotated fault blocks & inversions	146	203	267	10	15	30	0.1	0.18	0.22
b. Jurassic listric fault rollovers (shelf)	329	514	740	10	20	60	0.08	0.14	0.18
c. Cretaceous listric fault rollovers (shelf)	235	367	529	10	20	60	0.1	0.18	0.22
d. Upper Jurassic Subsalt canopy cutoff	90	141	337	5	15	30	0.08	0.14	0.18
e. Cretaceous stratigraphic onlap traps (landward & seaward)	477	745	984	5	15	30	0.1	0.18	0.22
f. Cretaceous three-way traps on diapirs flanks	265	369	531	5	15	30	0.08	0.18	0.22
g. Chalk Play - closures at T50	439	609	737	10	25	60	0.15	0.2	0.25
C. Shelburne Corridor									
a. Pre-salt Triassic syntectonic rotated fault blocks & inversions	201	279	369	10	15	30	0.1	0.18	0.22
b. Jurassic porous carbonate bank edge ("Acadia segment")	115	255	337	10	50	100	0.04	0.1	0.24
c. Jurassic slope turtles & folds (above primary salt)	244	509	672	5	10	30	0.08	0.14	0.18
d. Cretaceous slope turtles & folds (above primary salt)	407	637	840	5	15	20	0.1	0.18	0.22
e. Cretaceous stratigraphic onlap traps (carbonate foreslope)	312	488	751	5	15	20	0.1	0.18	0.22
f. Cretaceous three-way traps on diapirs flanks	504	700	924	5	15	20	0.1	0.18	0.22
g. Chalk Play - closures at T50	1344	1867	2259	10	25	60	0.15	0.2	0.25
D. Abenaki-Sable Corridor									
a. Pre-salt Triassic syntectonic rotated fault blocks & inversions	171	238	393	10	15	30	0.1	0.2	0.24
b. Upper Mic Mac to Missisauga listric fault rollovers & folds	829	1295	1865	10	40	80	0.08	0.16	0.22
c. Logan Canyon listric fault rollovers & folds	657	1026	1477	10	30	60	0.14	0.2	0.26
d. Jurassic porous carbonate bank edge ("Panuke segment")	90	140	202	10	50	100	0.04	0.1	0.24
e. Upper Jurassic to Cretaceous strat onlap traps (foreslope)	31	125	280	10	15	30	0.08	0.16	0.22
f1. Upper Jurassic subsalt canopy cut-off (shelf)	95	148	267	10	15	30	0.08	0.14	0.18
f2. Cretaceous subsalt canopy cut-off (slope)	573	1432	2578	15	30	60	0.1	0.18	0.22
g. Jurassic slope turtles & folds (above primary salt)	536	837	1205	10	20	40	0.08	0.14	0.18
h. Cretaceous slope turtles & folds (above primary salt)	694	1085	1562	10	30	60	0.1	0.18	0.22
i. Cretaceous supra-canopy turtles & folds	954	1490	2146	10	30	60	0.1	0.18	0.22
j. Cretaceous three-way traps on diapirs flanks	423	660	951	10	20	40	0.1	0.18	0.22
k. Chalk Play - closures at T50	561	876	1262	20	40	60	0.15	0.2	0.25
a Unper Jurassic listric fault rollovers (shelf)	472	655	955	10	15	20	0.08	0.14	0.19
h Missisauga listric fault rollovers & folds	47Z	050	1202	10	10	50	0.08	0.14	0.18
c Logan Canvon listric fault rollovers & folds	601	1090	1555	10	20	40	0.1	0.18	0.22
d Unner Jurgesic large unner slone folds	654	1022	1472	10	20	40	0.14	0.2	0.20
Cretaceous large upper slope folds (Stonehouse trend)	769	1025	1472	10	20	40 60	0.08	0.14	0.18
f Jurassic supra-capony turtles & folds (within BSW)	100	701	1000	10	20	40	0.1	0.18	0.20
σ Cretaceous supra-capopy turtles & folds (W Laurent capopy)	440 160	701 701	700A	10	20	40 60	0.08	0.14	0.10
b. Cretaceous supra-carropy turities & rolus (w. Laurent, Carlopy)	102	200 1002	504 1777	15	20	60	0.1	0.10	0.20
i Cretaceous subsalt canony cuttoff (West Laurentian canony)	E0	1005	1444 225	15	20	60	0.1	0.10	0.20
i Cretaceous stratigraphic onlan trans (seaward of RSM)		100	220	15	20	60	0.1	0.10	0.20
J. Cretaceous stratigraphic oniap traps (seaward or DSW)		103	329 010	10	3U 20	50	0.1	0.10	0.22
		502	010	10	50	50	0.1	0.18	0.20
F. Sydney Basin	700	1072	2550	10	20	40	0.1	0.14	0.10
a. HUILUII Iduit DIUCKS	789	13/5	355U	10	20	40	0.1	0.14	0.18
v. Carbonner Doofs v. Vindeor Roofs	394	980 1000	1072	10	20	40	0.1	0.14	0.18
	438	1096	1972	10	20	60	0.04	0.1	0.24

Other resource assessment input parameters such as net reservoir, porosity, water saturation, etc. were derived from available and analogous Nova Scotia offshore wells and reservoirs, as applicable. Plays in each region were risked at both the play level and prospect level, with the risking in each region treated as separate assessments. As such, a successful play in one region does not remove the play level risk in another region. Examples of different play types are show in Figures 19, colour coded for age and described in more detail below, with accompanying representative seismic profiles across different play types.

Rotated/inverted fault blocks below primary salt – Traps in this play type consists of rotated or inverted syn-rift pre-salt reservoirs (mainly fluvial) encased and sealed above by primary salt. The play exists only where there are rift basins that pass up-section into salt, and this scenario takes place in both Late Paleozoic and Early Mesozoic successions (Figure 14). The first play of this trap category exists in both region A and F, involving fault-offset mixed Horton Group clastics passing upsection into Carboniferous Windsor Group salt or carbonates (e.g. see Kendell et al. 2017) (e.g. Figure 21d). The second play within this trap category involves Triassic fluvial reservoirs of the Eurydice Formation sealed above by the Osprey/Argo primary salt layer (Figures 21a to c). This play is mainly restricted to the distal parts of rift basins in region A (including Orpheus Graben), and the landward parts of regions B, C, and D. The Muskat lead in region C falls into this category (see Deptuck 2020).

For either play type to work, a source rock within the presalt succession is required. This requirement is most easily met for Carboniferous strata, where potential source rocks are known in both the Horton and Lower Windsor group (Kendell et al. 2017). No source rocks have been identified in the study area within the Triassic Eurydice Formation (see Deptuck et al. 2015; Deptuck and Altheim 2018).

5 km

Figure 21. (previous page) Representative seismic sections showing potential pre-salt trap configurations. (a) Layered primary salt layer in the Mohican Graben overlying more heavily faulted pre-salt (syn-rift) fluvial-lacustrine strata; (b) a dip-oriented section across the western Scotian Slope (region C) showing syn-rift strata offset along landward-dipping extensional basement faults, overlain by the primary salt layer (pink); c) strike-oriented section showing potential inversions-related folds beneath the primary salt layer; (d) Yarmouth Subbasin containing potential Horton Group fluvial-lacustrine strata, overlain by Windsor Group salt, and a potential Pennsylvanian turtle structure developed above the salt; Note that synrift or pre-rift source rocks are required for these play concepts to work - neither of which has been proven outside of region F (Sydney Basin). LC = lower crust; UC = upper crust; Line locations shown in Figure 20.

An analogue to this play is the Meskala field in Morocco, where oil, condensate, and gas are trapped in Triassic syn-rift fluvial reservoirs rotated above basement blocks, in turn sealed by late syn-rift salt (Morabet et al. 1998; Mader et al. 2017; Tari et al. 2017). Hydrocarbons in the Meskala field were likely sourced from pre-rift Silurian or Carboniferous organic-rich successions. This scenario could also exist, for example, in the Oneida Graben in region A where there are suspected remnants of a prerift Carboniferous basin with unknown source rock potential (e.g. Figure 5). Adequate source rock is perceived as the largest geological risk factor for this play type.

Turtle anticlines and folds above primary salt – These traps range from turtle anticlines to compressional folds located above either the Windsor Group or Argo/Osprey Formation primary salt (Figure 23). Carboniferous

anticlinal structures are present in the Yarmouth Subbasin (region A) (see turtle structure in Figure 21d), in the Oneida Graben (see compressional folds (Figure 5), and in the Sydney Basin (region F), where there are supra-salt folds in the Carboniferous cover strata (Figure 22). This play type was tested in both of the North Sydney wells, with gas charge likely from Horton or lower Windsor source rocks. Reservoir quality is considered the primary risk element for the Carboniferous play.

Turtle anticlines and folds are also recognized above the Osprey/Argo primary salt layer, where both Jurassic and Cretaceous plays are present in regions C and D (Figure 23). Most traps correspond to either turtle/half turtle anticlines or compressional folds that involve the deepwater-equivalent of the Jurassic Mic Mac Formation and the Cretaceous Missisauga and Logan Canyon formations (Figure 24).

Figure 22. Seismic line from the Sydney Basin, showing the development of folds above the primary Windsor Group salt. From Kendell et al. (2017).

Potential traps are most evident beneath the Scotian Slope in the central parts of region C and D, where the original primary salt layer appears to have been thicker (Deptuck and Kendell 2020). The "Big Tancook" and "Big Thrum" leads (Deptuck 2008) fall into this play category. The Cretaceous turtles and folds play was tested at Newburn H-23 that encountered 7.5 m of gas pay in Cretaceous turbidites that were folded into thrust sheets immediately down-slope from a region of prominent growth and thin-skinned extension. The primary geological risk in these plays is reservoir presence and quality. In region C, source rock presence / maturity is also a primary geological risk.

Figure 23. (above) Play area map for Carboniferous, Jurassic, and Cretaceous turtles and folds located above either Windsor Group primary salt (Late Paleozoic) or Osprey/Argo primary salt (early Mesozoic).

Figure 24. (next page) Several examples of turtles and folds above the primary salt layer in region D; (a) Big Thrum and Seawolf leads (Deptuck 2008); (b) Kinsac lead; (c) Liscom lead (see also the Scotian Basin Integration Atlas 2023). Line location shown on Figure 23.

CNSOPB Geoscience Open File Report 2024-001MF 111 p.

Listric rollover anticlines – Rollover anticlines are found in the landward parts of region B, D, and E where they are associated with fluvial-deltaic environments that prograded above salt, with faults soling into both primary salt and above allochthonous salt bodies (Figures 6, 19a, 25). They are the dominant trapping style for gas- and condensate-bearing fluvial-deltaic reservoirs in the Sable Subbasin and are likewise the most common play type of the Significant Discovery Licences issued in the landward parts of regions D and E (Smith et al. 2014). On the eastern Scotian Shelf (region E), these structural traps are separated into three plays, corresponding to rollovers in the Middle to Upper Jurassic Mic Mac, Lower Cretaceous Missisauga and Lower to mid-Cretaceous Logan Canyon formations (Figures 8). Each successive play migrated further seaward as fluvial-deltaic to shoreface siliciclastics prograded south and west, periodically interrupted during periods of higher sea level that allowed shale to accumulate above the shelf.

In region D (Sable Subbasin), where Jurassic strata are more deeply buried, just two rollover plays are distinguished. The first includes the upper part of the Mic Mac and all the Missisauga formation, and the second corresponds to the Logan Canyon Formation. Forced folds that developed through differential compaction above basement highs or the carbonate bank are also grouped into this play (e.g. with Cretaceous reservoirs of the Cohasset-Panuke field corresponding to the latter). Rollover anticlines are also recognized in region B, where they are separated into a Middle to Upper Jurassic play and a Lower to mid-Cretaceous play (Figure 6a). Plays here are based mainly on seismic observations from vintage seismic profiles that show the development of growth faults, some with clear progradation recorded by clinoform packages (Deptuck et al. 2015).

Both fault-seal dependent three-way traps and four-way dip closures are possible in regions D and E, with the former only being effective where there is sufficient shale in the succession (Smith et al. 2014). The Aptian Naskapi Member (shale) of the Logan Canyon Formation is the primary seal, with secondary seals corresponding to Albian to Cenomanian Sable Member (of the Logan Canyon Formation), and the Turonian to Santonian shale of the Dawson Canyon Formation. Numerous wells in region D and E have tested these traps, with water depths generally shallower than 100 m. Lack of fault seal associated with very high net:gross fluvial-deltaic successions appears to be the primary failure mechanism (Smith et al. 2014), with seal risk increasing in the landward direction and for reservoirs located above the Naskapi shale. Still, large swaths of the play areas lack 3D seismic coverage (Table 2; Fig 26), and most of the available shelf 3D data is more than two decades old.

Figure 26. Perspective view from the southwest showing a dip map of the K94 marker in regions D and E (darker grey corresponds to steeper dips), with the top of expelled salt bodies posted in pink. Map shows the widespread listric faulting on the outer shelf, corresponding to the Logan Canyon rollover anticline play. The landward region of this play type corresponds to an area of listric faults that were reactivated in the Cenozoic. Yellow outline shows the perimeter around available 3D seismic data, and red symbols correspond to well locations that were draped on the K94 grid.

Figure 27. Perspective view from the south of the Hauterivian K130 time-structure map, showing an untested rollover anticline trap in the Sable Subbasin ("Poplar" lead from Smith et al. 2016).

Large upper slope rollover anticlines - This trap style, a variation of a rollover anticline trap, is exclusively recognized on the upper slope in region E, where it corresponds to a long-wavelength and laterally continuous Cretaceous fold, referred to here as the "Stonehouse play". The main fold is a very large rollover anticline that formed in response to focused Albian to Cenomanian sedimentation above the headward/ landward parts of the buried Jurassic BSW. Its northeastoriented fold crest stretches more than 120 km along the upper slope of region E. Water depths range from 1,500 to 2,500 m, with the primary reservoir interval located between the J145 to K112 markers (Lower to mid Cretaceous). Although the most optimistic closing contour defines a closure area exceeding 2,400 km², the location of Tantallon M-41 above the northern limb of the Stonehouse fold, indicates a shallower closing contour is more appropriate, covering about 1,200 km², which was used to define the P50 play area (Table 5). The presence of subtle saddles along the fold crest may further separate it into three or four smaller closures. Still, this play includes the largest individual structures in the study area.

Tantallon M-41 tested this play and encountered a ~10 m interval of gas charged sands (Goodway et al., 2008), but very little reservoir-quality sandstone was encountered in the well. Cores from the well sampled hundreds of stacked sharp-based thin-bedded turbidites composed of very fine-grained to medium-grained sandstone (see Piper et al. 2010), suggesting the well was positioned in a predominantly overbank settings adjacent to coarser grained sediment transport corridors

Figure 29. Example seismic profiles across long-wavelength rollover anticlines located on the upper slope in region E. Line locations shown in Figure 28. Note that the structures are much clearer in depth (see Deptuck et al. 2014).

(see Figure 16). If correct, much thicker reservoirs may be present along strike of the Stonehouse structure (see section on reservoir risking). A stratigraphic component (i.e. the lateral margins of one or more stacked channelbelts) may limit trap size. Adequate reservoir development and lateral reservoir extent are probably the largest geological risk factors for this upper slope play type.

Supra-canopy turtles and folds – Potential traps in this category correspond mainly to turtle structures, but also include other kinds of folds that develop above canopy salt (Figures 19, 25). They range in size from <10 to >170 km² and are found in water depths ranging from roughly 2,000 to 3,800 m. Traps are separated into a Cretaceous play and a Jurassic play. Numerous Cretaceous turtles and folds are present above the Sable Slope Canopy and SW Laurentian Canopy, located in regions D and E, respectively (e.g. Figure 23). These structures formed on the slope as the Missisauga and Logan Canyon formations prograded across the shelf. Complex slope morphology associated with the movement of salt and development of minibasins, enables turbidite sands to accumulate on the slope. Turtle anticlines form as the centers of some minibasins weld-out, and gradually inverted as minibasin flanks continued to deflate expelling salt laterally. Other minibasins experienced extension, rotation, and shortening, as canopy salt was mobilized seaward. This play type was tested by Annapolis B-24, which encountered 27 m of net gas and condensate pay within turbidite reservoirs (Kidston et al.2007; Kendell et al. 2012). In some situations, canopy salt may hinder hydrocarbon migration from both Tithonian and Pliensbachian source rocks located below the canopy. Charge access for traps located above the Sable Slope Canopy is an important geologic risk element for this play.

Numerous Middle to Upper Jurassic turtles and folds are also recognized. They are associated with Jurassic salt tectonics in region E, where voluminous Mic Macequivalent sediments were delivered to the slope. Fourway dip closures are associated with fault rollovers, turtles, half turtles, and thrust-related folds in the BSW (Figures 19b, 31). Reservoir quality in Jurassic turtles in region E is unknown, but the presence of carbonates in the Mic Mac Formation on the shelf is known to diminish reservoir porosity and permeability (Smith et al. 2014). The stratigraphic position of the Tithonian source rock interval relative to the Jurassic turtles and folds is also a key uncertainty for the viability of this play. Tithonian source rocks located above or adjacent to Jurassic leads, would require more complicated migration paths to charge these structures (including downward migration).

3.0 km

Figure 30. (above) Example of a Cretaceous extensional turtle anticline located above the Sable salt canopy ("Thorburn" lead; Kendell et al. 2012). See Figure 25 for line locations.

Figure 31. Several examples of Jurassic turtle anticlines within the Banquereau Synkinematic Wedge. See Figure 25 for line locations. Not the transparent yellow interval in (b) and (c) that pinches out above the BSW, interpreted as distal Lower Cretaceous turbidite packages.

Salt-cored folds – This play is a sub-set of the Cretaceous turtles and folds play. It is treated separately because the traps within it exist exclusively along the distal margins of the BSW in region E. Enhanced up-slope thin-skinned extension during the Albian-Cenomanian was balanced down-slope through shortening of pre-existing salt bodies, producing a series of salt-cored folds collectively referred to as the "Banquereau fold-belt". Folds are arranged in a 200 km long arch that mimics the shape of the underlying BSW (Figure 28). At least 15 four-way dip closures associated with these folds were identified on the K125 and K112 markers. Several examples of these folds are shown on the seismic profiles in Figure 32. They range in size from 31 to 180 km². Water depths generally range from 3,000 to 4,000 m. Traps are generally welldefined, comprising thick folded successions of Lower Cretaceous strata that accumulated above the seaward parts of the BSW. Folds are localized directly above mechanically weaker salt bodies that accommodated post-Aptian shortening. Their timing is similar to that of the Stonehouse play. Some localized syn-kinematic thinning of Aptian strata took place above the K125 marker, with more widespread and pronounced thinning taking place in the Albian, above the K112 marker, marking the most important period of fold growth. Albian strata provide a regional seal, while interlayered fine-grained sediment are also likely to provide local reservoir-seal pairs. Reservoirs are expected to be a combination of Valanginian to Aptian turbidite channelbelt sands and sheet-like lobe sands.

Some folds were pierced by salt diapirs, while others have a number of crestal faults that could affect trap integrity. The Late Miocene salt-cored Mississippi Fan fold-belt (Rowan and Peel 2005) is an excellent analogue for the Banquereau fold-belt.

Figure 32. Seismic examples of salt-cored folds (D) above squeezed salt bodies in the BSW. Folds developed in the mid-Cretaceous in response to up-slope thin-skinned extension. Other examples are show in Figure 31b. Line locations shown in Figure 27.

Sub-salt cut-off traps – Potential sub-salt cut-off traps form as turbidite sands (or other reservoirs) are deposited in front of an advancing salt sheet, with potential reservoirs terminating up-dip along what ultimately becomes the base salt surface. They are recognized in four areas, forming four different plays (Figure 28). Beneath the Shelburne salt canopy in region B, and the "Sable Shelf Canopy" in region D, they correspond to potential Upper Jurassic reservoirs beneath more localized salt tongues expelled on the slope and the shelf, respectively. Beneath the "Sable Slope Canopy" in region D, and beneath the SW Laurentian canopy in region E, they correspond to potential Lower to mid-Cretaceous deepwater reservoirs deposited as the Missisauga and Logan Canyon formations prograded across the shelf, driving salt expulsion and turbidite sedimentation on the slope. Although such traps work in other settings (like the Gulf of Mexico), poor seismic imaging below salt canopies coupled with sparse line density make it challenging to map specific three-way closures.

Two deepwater wells have tested this play type – both in region D. Weymouth A-45 encountered no significant

hydrocarbon shows and very little reservoir quality sandstone. Aspy D-11 targeted a narrow, east-west trending, sub-canopy trap, requiring three-way closure against a combination of overlying salt and a fault/saltweld to its east (Figure 33). The subsalt reservoir intervals were interpreted to be Lower Cretaceous turbidite lobes and channel complexes age-equivalent to the widespread sandstone reservoirs on the shelf in the Missisauga and Logan Canyon formations. The well encountered a 130 m thick interval containing multiple Aptian aged siltstones with significantly elevated mudgas readings and fluorescent cuttings. While reservoir quality sandstones were not encountered in this interval, there were clear indications of gas charge. Deeper in the well, two Barremian-Hauterivian aged sandstones were wet, probably because the lateral seal for this trap failed where the salt feed welded out (e.g. right side of Figure 33). The primary geologic risks associated with sub-salt traps is a combination of trap integrity and reservoir presence. Similar geologic risks apply to other subcanopy cut-off traps like Brooklyn, which contains several stacked "hard-over-soft" reflections consistent with potential turbidite sands beneath the eastern parts of the Sable Slope Canopy (Figure 34).

Figure 33. Dip-oriented depth profile along the Aspy D-11 deviated borehole. Line location shown in Figure 27.

CNSOPB Geoscience Open File Report 2024-001MF 111 p.

Figure 34. Dip-oriented seismic depth profile through the 'Brooklyn' lead where several bright "soft" reflections terminate along the base salt surface beneath the eastern part of the Sable Slope Canopy. Line location shown in Figure 28.

Three-way closures on salt body flanks – Several potential three-way and four-way traps are found above and along the flanks of salt diapirs in regions B, C, D, and E (Figures 35, 36). They are mainly located where Cretaceous strata is upturned along the flanks, or folded above the crests, of younger salt bodies (e.g. Figure 35). A number of potential salt flank traps are also present where salt diapirs pierced the salt-cored folds in the "Banquereau Foldbelt", generating additional trap geometries.

Trap definition with existing 2D seismic profiles is complicated by the small size of some potential leads, and the complexity of salt tectonics, especially above the Sable and SW Laurentian canopies. Likewise, the young timing of salt diapirism – in some cases continuing into the Paleogene – may increase risk of breaching trap integrity. Trap integrity, reservoir presence, and adequate trap size are considered the highest risk elements for this play type.

Figure 35. Perspective view of upturned strata on the flanks of salt diapirs in region B. BSR = Bottom simulating reflections (base of gas hydrates)

Stratigraphic traps – Stratigraphic traps fall into two categories, those generated by up-dip stratigraphic pinch-out/onlap onto the Jurassic carbonate foreslope, and those located further seaward, near the termination of deepwater turbidite systems on the lower slope or rise. The Cayuga lead is an example of the former, corresponding to mid-Cretaceous turbidite channels that onlap onto the carbonate foreslope and show abrupt amplitude cut-off down slope (Figure 38). Similar onlap traps are present in regions B, C, and D (Figure 36).

Potential deeper-water stratigraphic traps are present in regions B and E (Figure 36). Examples include the distal

pinch-out of earliest Cretaceous aprons in Figure 39, consisting of stacked intervals of bright-amplitude soft reflections that onlap and pinch-out against the distal perimeter of the BSW. They are believed to have been supplied during erosion of the Avalon Uplift. Potential analogues for the pinch-out traps along the distal margins of the BSW include the Buzzard field in the North Sea, which contains 400 million barrels of oil in Late Jurassic turbidite reservoirs that form a wedge-shaped stratigraphic trap thinning onto the slope, sourced by Late Jurassic source rocks (Dore and Robbins 2005).

Amplitude extraction from K101 marker

Figure 37. Amplitude extraction from the K101 marker, showing a strong negative reflection interpreted as a turbidite apron supplied by a narrow submarine channel. On the right side, is a seismic profile showing the potential three-way trap on the flank of the diapir (line identified in blue on the amplitude extraction.

Other examples are present in region B, where broad bottom-current reworked channel corridors pinch-out above the Shelburne salt canopy or the positive relief generated by Cretaceous contourite drifts (e.g. the Petite Pearl lead; Deptuck 2020) (Figure 38). Water depths for these distal examples generally range from 3,000 to 4,500 m. Although many stratigraphic plays are very large, they also carry a higher risk. Trap presence and integrity are considered the highest risk factor for this play. Sparse line density along the seaward parts of the BSW, preclude mapping specific three-way closures with the data available for this study. Likewise, such traps can be very subtle, requiring a higher confidence velocity model than the one used in this study.

CNSOPB Geoscience Open File Report 2024-001MF 111 p.

Yellow transparency - pinch-out of submarine fan aprons TGS 972-100

Figure 39. Two seismic profiles crossing the toe of the Banquereau Synkinematic Wedge, showing to up-dip pinch-out/onlap of bright amplitude hard-over-soft reflections interpreted as turbidite sheet sands supplied in the earliest Cretaceous. These profiles also show the salt-cored folds of the "Banquereau fold-belt" that reactivated the buried salt bodies along the seaward perimeter of the BSW.

Porous bank edge/carbonate build-ups – Two play types involve higher energy carbonate buildups in the study area. The first – a Windsor reef play (Table 2) - is present in region F, where local Gays River Formation dolomitized reef buildups may be present along the margins of the Early Carboniferous Windsor Sea (Savard 1996; Kendell et al. 2017). These reefs would be localised and potentially difficult to identify on the current seismic data but are a potential reservoir for hydrocarbons generated from Horton or even lower Windsor group source rocks. Onshore, these reefs are common where

5 km

the Gays River Formation oversteps basin bounding topography (Ryan et al. 1991).

The second play is younger, corresponding to an Upper Jurassic carbonate bank-edge with potential for porous reef margin reservoirs in regions C and parts of D (Figure 36). The play area is narrow (~ 5 km wide) and roughly 250 km, where it parallels the modern shelf edge. Jurassic reefal buildups developed as the Abenaki Formation aggraded above the slowly subsiding LaHave Platform (Eliuk 1978; Wade and MacLean 1990; Figure 8).

The Deep Panuke gas field, discovered in 1998, shows that the porous reefal facies of the Abenaki Formation can form effective reservoirs. Much of the vuggy or cavernous porosity was created through leaching and secondary dolomitization, with a top seal generated by tight limestones (Kidston et al. 2005). Although production of gas proved challenging from the Deep Panuke carbonate reservoirs due to excessive water production, overall recovery of liquid hydrocarbons (oil), if discovered, may not be as adversely affected by these production issues from such reservoirs. Trap integrity is a primary geological risk, as several younger periods of erosion, including the Montagnais marine impact event, have focused erosion near the bank edge, potentially breaching some traps or removing the porous reef margin.

Chalk Play – The chalk play includes a broad spectrum of potential anticlinal traps on the slope that involve either in-situ or resedimented chalk reservoirs. The Eagle gas discovery on the shelf of region D consists of 52 m of net gas pay in porous Upper Cretaceous chalks of the Wyandot Formation (1.27 Tcf gas in place, Sable Subbasin), while the Primrose Significant Discovery further east consists of 50 m of net gas pay in Wyandot chalks folded above a salt diapir (Smith et al. 2014; 2018). Chalk in both locations is likely in-situ (see Ings et al. 2005); it accumulated during periods of high eustatic sea level that drowned the shelf starting in the Late Cretaceous.

Resedimented chalks are likely to form higher permeability reservoirs (Brasher and Vagle 1996; Megson and Tygesen 2005), but these may be more

common on the slope than on the shelf. For example, Figure 41 shows a series of broad erosive upper slope channels that pass down-slope into higher amplitude seismic facies interpreted as overlapping calci-clastic submarine fans composed of resedimented chalk. One interesting question is to what degree does bottom current reworking also impact the reservoir properties of chalks? Even if resedimented/re-worked chalk is prolific throughout the slope of regions B, C, and D, the generally low matrix permeability of chalk reservoirs remains a key risk element for the chalk play. Enhanced production techniques such as acidizing, hydraulic fracturing and multiple fracture horizontal wells are commonly required to improve production in chalk reservoirs in

other jurisdictions (e.g. Ekofisk field in the North Sea).

Potential traps in the chalk play are widespread on the slope (Figures 36, 42). They include folded chalk intervals above numerous squeezed salt bodies in regions B and C (e.g. Figure 42 bottom) and turtle structures and folds above canopy salt in region D (e.g. Figure 41 middle). The burial depth of the chalk series and associated mechanical compaction and cementation remain key risk factors for reservoir quality in the chalk play (e.g. Brasher and Vagle 1996; Ings et al. 2005), though present-day burial depths above some salt crests and the distal parts of the Sable Slope Canopy are comparable to the shelf (see Deptuck and Kendell 2020).

Petroleum Resource Assessment

Inputs, Risking Parameters & Results

Calculations of original hydrocarbon in place (OHIP) were conducted using the following standard volumetric equation, employed within a Monte Carlo style probabilistic simulation using the @Risk[™] software:

OHIP = A * h * Φ * (1-S_w) * FVF

ΟΗΙΡ	= Original H	ydrocarbons ((Gas/Oil)) in Place (m3)
-	- 0 -				- /

- A = Areal extent of the accumulation (km² * 1,000,000)
- h = Average Net reservoir thickness for the reservoir zone (m)
- **Φ** = Average Porosity (Fraction)
- **S**_w = Average Water Saturation (Fraction)

FVF = Formation Volume Factor (m3/m3)

Each input variable (Table 5) was defined as triangular distributions based on minimum (P100), most likely (P50) and maximum (P00) interpreted values. The CNSOPB analysis of input parameters included a review of all available well, seismic and production data. The play areas, for each region, were based on the discounted play area method, but with areas under trap constrained, where possible, by the closure area of mapped leads in each region.

Average net reservoir thickness, average porosity and water saturation were based on the interpretation of analogous wells with values chosen accordingly (see Table 5). Where it was believed there was potential for the play to work at multiple stratigraphic intervals (e.g. stacked reservoirs) the net reservoir input parameters were selected accordingly. Formation Volume Factor was determined based on the interpreted depth and pressure of the reservoir interval(s) supported by data from analogous wells.

Risking – In addition to the volumetric inputs above, an evaluation of the risk in each of the key petroleum system elements (source, reservoir, trap and seal) was assigned at both the play and prospect level for each play type (Table 6). Play risk was determined by evaluating the risk of each petroleum system element (source,

reservoir trap and seal) "working" at the play level. A second level of risk (Prospect risk) was applied to all the "successful" @Risk simulation runs. Prospect risk is applied on the assumption that the play is working geologically and is determined by considering source, reservoir, trap, and seal risk at the lead (prospect) level within a play. The play and prospect risks applied to each play type are shown in Table 6. Just eight of the 44 plays have a chance of success greater than 10%, all of which are found in regions D and E and include both proven plays like rollover anticlines on the shelf, and technically successful plays like Cretaceous turtles and folds above both primary and canopy salt (e.g. hydrocarbon charged reservoirs encountered at Newburn H-23 and Annapolis G-24; Figure 1c).

Petroleum Resource Estimates

Petroleum resource estimates for the six geographic regions are presented in tables 9 to 14. Petroleum resource estimates for each of the 44 individual play types are presented in Appendices 1 to 6. All resource estimate tables include the P90, P50, P10 and mean calculated volumes for natural gas, natural gas liquids and barrels of oil equivalent. In addition to resource estimates, a probability curve for the mean fully risked recoverable volumes are shown beneath each table, in million barrels of oil equivalent (MMBOE). The total mean, fully risked recoverable petroleum resource estimate for the study area is ~48 Tcf or 10 260 MMBOE, with P10 (best case) values of ~98 Tcf or 20 458 MMBOE.

In regions with proximity to known oil shows or discoveries (see Table 3), or where the main source rock interval corresponds to the theoretically more oil-prone restricted marine Pliensbachian source rock, oil volumes were also calculated. This is mostly applicable to regions A, B and C where a Pliensbachian or older source rock is required for any play to work, but also for areas on the shelf where light oil has been encountered in region D. The total fully risked recoverable oil for the study area is 1.3 billion barrels (Mean/most likely case) to 2.9 billion barrels (P10/best case) (Table 1). The results of this study show that significant exploration potential remains along the eastern parts of the study area (regions D and E), while the high geological risk and relatively low chance of success along the western parts of the margin (regions B and C) and east of Cape Breton Island (region F) present significant exploration challenges (Figure 43).

Regions D and E have the most favourable exploration potential and the lowest geological risk, accounting for 90% of the total estimated fully risked recoverable hydrocarbon volumes (based on MMBOE - see Figure 43). They also correspond to regions where oil and gas have already been discovered or produced (Figure 1 inset). Aside from the proven Jurassic and Cretaceous rollover anticline plays on the shelf, the most promissing play types in region D include Cretaceous slope turtles/folds (above primary salt), Cretaceous supracanopy turtles/folds (above canopy salt), and Cretaceous subsalt canopy cut-offs (slope), with Mean recoverable gas of 5531, 4936, and 3763 BCF, respectively. The most promissing play types in region E include the salt-cored folds ("Banquereau fold-belt play") and the upper slope rollover anticlines ("Stonehouse play"), with Mean recoverable gas of 6355 and 3763 BCF, respectively.

Outside of regions D and E, the primary limiting factor on estimated hydrocarbon volumes is the risking profile, where some of the petroleum system elements are either missing, unclear, or reside in areas where there is an absence of good quality borehole and/or seismic datasets. For example, listric growth faults beneath Georges Bank in region B are part of a gravity spreading system driven by progradation of the 'Shelburne Delta'. Upslope extension above the primary salt layer was balanced down-slope by shortening, producing a variety of potential traps. Despite some similarities with the 'Sable Delta' in region D, the generally smaller aerial coverage of region B itself (31 767 km² versus 42 852 km²; see Table 2), as well as individual plays within region B (e.g. P50 coverage of Cretaceous rollover anticlines is just7345 km² versus 13 929 km² in region D), coupled with the much thinner stratigraphic succession, and uncertainty about an unproven Lower Jurassic source rock, conspire to increase geological risk in region B compared to region D. As such, estimates of the unrisked recoverable mean hydrocarbon volumes in region B decrease from roughly 8.5 BBOE (Table 10) to a just 0.253 BBOE after risking (Figure 44). The lack of well control (Table 3) and generally poor seismic data quality in region B (Table 2) also increase geological uncertainty and add incremental exploration risk. It is noteworthy that one new exploration well encountering reservoir and/or hydrocarbons on the shelf or slope, would substantially improve the risk profile of region A, B, and perhaps even regions C, requiring an amendment to the reservoir and/or source rock play and prospect level risking that are likely to yield larger risked volumes. Likewise, while gas was encountered in low porosity sandstones in the Sydney Basin, if a well was drilled through higher porosity hydrocarbon charged sandstone or carbonates, geological risk in region F would show a marked decrease, with an increase in risked resource estimates. The same applies to the chalk play in regions B, C, and D, where the relatively small associated risked recoverable volumes would increase substantially with one successful slope well through higher porosity/permeability resedimented Upper Cretaceous to Eocene chalks on the slope.

Unlike region B where the absence of good quality seismic and borehole data contributed to its risk profile, region C has substantial 3D seismic coverage (see Tables 2) and was sparsely tested by seven wells, including two of the three most recent exploration wells (Monterey Jack E-43 and Cheshire L-97). Improved data guality and coverage reduce the geological uncertainty in region C, but bolsters the interpretation that reservoir presence is a key risk factor. Interpretation of 3D seismic volumes show little evidence for the accumulation of coarser grained Cretaceous turbidite reservoirs prior to the Late Albian, when fluvial-deltaic sediments in the westernmost Sable Delta had not yet reached the bank edge along the eastern reaches of the Shelburne Subbasin (Deptuck and Kendell 2020; 2022).

Figure 44. Depth-structure map of the Late Albian K101 marker in the eastern parts of region C, draped by an RMS amplitude extraction showing the elevated amplitudes along the axes of broad, bottom current reworked slope channels in the Shelburne and Torbrook 3D seismic volumes. Salt piercement through the K101 marker shown in pink. Note the position of Cheshire L-97 between two of these channels. See figure 40 for location (adapted from Deptuck and Kendell 2020).

Even still, most reservoirs are expected to be restricted to the axes of mainly non-aggradational slope channels rather than slope aprons (e.g. see the amplitude extraction from the Late Albian K101 marker in Figure 44), and the impact of bottom current reworking remains unclear.

	Play Risk						Prospect Risk				
Table 6. Summary of play and prospect risking used in regions A through F. Plays with total chance of success/risk higher than 10% are highlighted in red.	Play Risk	Reservoir	Source	Trap	Seal	Prospect Risk	Reservoir	Source	Trap	Seal	Total Risk
A. LaHave Platform											
a. Pre-salt Triassic syntectonic rotated fbs & inversions	0.06	0.60	0.30	0.60	0.60	0.04	0.50	0.30	0.50	0.50	0.002
b. Carboniferous(?) post-Windsor turtles	0.12	0.50	0.50	0.80	0.60	0.09	0.50	0.50	0.70	0.50	0.011
c. Carboniferous(?) pre-Windsor fault blocks & inversions	0.11	0.50	0.50	0.70	0.60	0.09	0.50	0.50	0.60	0.60	0.009
d. Cretaceous fault rollovers and forced folds	0.26	1.00	0.75	0.70	0.50	0.22	0.90	0.70	0.70	0.50	0.058
B. West Shelburne Corridor											
a. Pre-salt Triassic syntectonic rotated fbs & inversions	0.06	0.60	0.30	0.60	0.60	0.04	0.50	0.30	0.50	0.50	0.002
b. Jurassic listric fault rollovers (shelf)	0.26	0.80	0.50	0.80	0.80	0.17	0.70	0.50	0.70	0.70	0.044
c. Cretaceous listric fault rollovers (shelf)	0.26	0.80	0.50	0.80	0.80	0.18	0.70	0.50	0.70	0.75	0.047
d. Upper Jurassic Subsalt canopy cutoff	0.18	0.65	0.50	0.70	0.80	0.14	0.60	0.50	0.60	0.80	0.026
e. Cretaceous stratigraphic onlap traps	0.17	0.80	0.50	0.70	0.60	0.15	0.70	0.50	0.70	0.60	0.025
f. Cretaceous three-way traps on diapirs flanks	0.22	0.80	0.50	0.80	0.70	0.16	0.70	0.50	0.70	0.65	0.036
g. Chalk Play - closures at T50	0.25	0.80	0.50	0.90	0.70	0.13	0.60	0.50	0.70	0.60	0.032
C. Shelburne Corridor											
a. Pre-salt Triassic syntectonic rotated fbs & inversions	0.06	0.60	0.30	0.60	0.60	0.04	0.50	0.30	0.50	0.50	0.002
b. Jurassic porous carbonate bank edge (Acadia)	0.44	0.90	0.60	0.90	0.90	0.22	0.80	0.50	0.80	0.70	0.098
c. Jurassic slope turtles & folds (above primary salt)	0.14	0.40	0.55	0.80	0.80	0.07	0.30	0.50	0.70	0.70	0.010
d. Cretaceous slope turtles & folds (above primary salt)	0.12	0.40	0.55	0.70	0.80	0.08	0.40	0.50	0.60	0.70	0.010
e. Cretaceous stratigraphic onlap traps (carb. foreslope)	0.16	0.70	0.55	0.70	0.60	0.11	0.60	0.50	0.60	0.60	0.017
f. Cretaceous three-way traps on diapirs flanks	0.09	0.40	0.55	0.60	0.70	0.06	0.40	0.50	0.50	0.60	0.006
g. Chalk Play - closures at T50	0.28	0.80	0.55	0.90	0.70	0.14	0.60	0.50	0.80	0.60	0.040
D. Abenaki-Sable Corridor											
a. Pre-salt Triassic syntectonic rotated fb & inversions	0.06	0.60	0.30	0.60	0.60	0.04	0.50	0.30	0.50	0.50	0.002
b. Upper Mic Mac to Missisauga listric rollovers & folds	1.00	1.00	1.00	1.00	1.00	0.32	0.90	1.00	0.70	0.50	0.315
c. Logan Canyon listric fault rollovers & folds	1.00	1.00	1.00	1.00	1.00	0.18	0.75	1.00	0.60	0.40	0.180
d. Jurassic porous carbonate bank edge (Panuke)	1.00	1.00	1.00	1.00	1.00	0.26	0.60	0.90	0.60	0.80	0.259
e. Upper Jurassic to Cretaceous strat onlap traps	0.31	0.80	0.80	0.70	0.70	0.10	0.60	0.80	0.40	0.50	0.030
f1. Upper Jurassic subsalt canopy cut-off (shelf)	0.29	0.60	0.90	0.60	0.90	0.12	0.40	0.75	0.60	0.65	0.034
f2. Cretaceous subsalt canopy cut-off (slope)	0.36	0.80	0.75	0.60	1.00	0.20	0.65	0.70	0.60	0.75	0.074
g. Jurassic slope turtles & folds (above primary salt)	0.32	0.50	0.80	0.90	0.90	0.17	0.50	0.70	0.80	0.60	0.054
h. Cretaceous slope turtles & folds (above primary salt)	0.66	0.90	0.90	0.90	0.90	0.24	0.60	0.80	0.70	0.70	0.154
i. Cretaceous supra-canopy turtles & folds	0.58	0.90	0.80	0.90	0.90	0.21	0.60	0.70	0.70	0.70	0.120
j. Cretaceous three-way traps on diapirs flanks	0.34	0.80	0.80	0.75	0.70	0.08	0.45	0.70	0.50	0.50	0.026
k. Chalk Play - closures at 150	0.42	0.90	0.80	0.90	0.65	0.19	0.60	0.75	0.70	0.60	0.080
E. Huron Corridor											
a. Upper Jurassic listric fault rollovers (shelf)	0.37	0.80	0.90	0.80	0.65	0.13	0.80	0.80	0.60	0.35	0.050
 b. Missisauga listric fault rollovers & folds 	1.00	1.00	1.00	1.00	1.00	0.24	0.90	0.90	0.60	0.50	0.243
c. Logan Canyon listric fault rollovers & folds	0.81	0.95	0.95	0.95	0.95	0.09	0.70	0.90	0.50	0.30	0.077
d. Upper Jurassic large upper slope folds	0.45	0.70	0.80	0.90	0.90	0.17	0.50	0.70	0.80	0.60	0.076
e. Cretaceous large upper slope folds (Stonehouse trend)	0.54	0.75	0.90	1.00	0.80	0.35	0.60	0.80	0.90	0.80	0.187
f. Jurassic supra-canopy turtles & folds (within BSW)	0.44	0.70	0.70	1.00	0.90	0.18	0.55	0.70	0.80	0.60	0.081
g. Cretaceous supra-canopy turtles & folds (W Laurent.)	0.40	0.80	0.70	0.90	0.80	0.21	0.70	0.60	0.70	0.70	0.083
h. Cretaceous fold-belt (Banquereau foldbelt)	0.48	0.85	0.70	1.00	0.80	0.25	0.70	0.70	0.85	0.60	0.119
I. Cretaceous subsait canopy cuttoff (West Laurentian)	0.32	0.70	0.90	0.50	1.00	0.11	0.60	0.60	0.40	0.75	0.034
J. Cretaceous stratigraphic onlap traps (seaward of BSW)	0.33	0.85	0.70	0.70	0.80	0.12	0.70	0.70	0.40	0.60	0.039
K. Inree-way closures on diapir flanks	0.31	0.70	0.75	0.85	0.70	0.13	0.60	0.70	0.60	0.50	0.039
r. syaney Basin											
a. Horton fault blocks	0.20	0.60	0.70	0.80	0.60	0.15	0.50	0.70	0.70	0.60	0.030
b. Carboniferous inversion folds	0.36	0.70	0.80	0.80	0.80	0.24	0.60	0.70	0.80	0.70	0.084
c. Windsor Reefs	0.17	0.60	0.80	0.50	0.70	0.12	0.50	0.80	0.50	0.60	0.020

.

	G	ias	Oil		
Table 7.Summary of fully risked in place andrecoverable gas and oil for each of the 44 play types(Mean).	Fully Risked GIP (BCF) Mean	Fully Risked Recov. (BCF) Mean	Fully Risked OIP (MMBbls) Mean	Fully Risked Recov. (MMBbls) Mean	
A. LaHave Platform					
a. Pre-salt Triassic syntectonic rotated fbs & inversions	21	16	7	2	
b. Carboniferous(?) post-Windsor turtles	9	3	7	2	
c. Carboniferous(?) pre-Windsor fault blocks & inversions	12	4	10	2	
d. Cretaceous fault rollovers and forced folds	553	414	121	42	
B. West Shelburne Corridor			-		
a. Pre-salt Triassic syntectonic rotated fbs & inversions	7	5	2	1	
b. Jurassic listric fault rollovers (shelf)	203	122	40	12	
c. Cretaceous listric fault rollovers (shelf)	188	141	40	14	
d. Upper Jurassic Subsalt canopy cutoff	/0	42	8	2	
e. Cretaceous stratigraphic onlap traps	253	190	67	23	
f. Cretaceous three-way traps on diapirs flanks	168	126	46	16	
g. Chalk Play - closures at 150	531	144	65	13	
	7	F	2	1	
a. Pre-sait Triassic syntectonic rotated fbs & inversions	7	5	2 107	1	
b. Jurassic porous carbonate bank edge (Acadia)	516	140	187	20	
 d. Cretaceous slope turtles & folds (above primary salt) 	60	30	15	4	
Cretaceous slope turities & rolus (above primary sait)	96	43	18	9	
f Cretaceous three-way trans on dianirs flanks	46	35	12	3	
σ Chalk Play - closures at T50	2 076	561	206	52	
D. Abenaki-Sable Corridor	2,070	501	200	52	
a. Pre-salt Triassic syntectonic rotated fh & inversions	13	10	4	1	
h. Upper Mic Mac to Missisauga listric rollovers & folds	10 669	8 004	802	281	
c. Logan Canvon listric fault rollovers & folds	3.743	2,805	385	135	
d. Jurassic porous carbonate bank edge (Panuke)	958	258	333	117	
e. Upper Jurassic to Cretaceous strat onlap traps	66	49	0	0	
f1. Upper Jurassic subsalt canopy cut-off (shelf)	89	53	0	0	
f2. Cretaceous subsalt canopy cut-off (slope)	5,031	3,763	0	0	
g. Jurassic slope turtles & folds (above primary salt)	1,024	615	0	0	
h. Cretaceous slope turtles & folds (above primary salt)	7,093	5,331	0	0	
i. Cretaceous supra-canopy turtles & folds	6,587	4,936	0	0	
j. Cretaceous three-way traps on diapirs flanks	364	273	0	0	
k. Chalk Play - closures at T50	3,269	879	0	0	
E. Huron Corridor					
a. Upper Jurassic listric fault rollovers (shelf)	374	224	0	0	
b. Missisauga listric fault rollovers & folds	4,852	3,637	0	0	
c. Logan Canyon listric fault rollovers & folds	1,546	1,160	0	0	
d. Upper Jurassic large upper slope folds	1,608	965	0	0	
e. Cretaceous large upper slope folds (Stonehouse trend)	8,462	6,355	0	0	
f. Jurassic supra-canopy turtles & folds (within BSW)	1,434	857	0	0	
g. Cretaceous supra-canopy turtles & folds (W Laurent.)	868	652	0	0	
h. Cretaceous fold-belt (Banquereau foldbelt)	5,012	3,763	527	185	
i. Cretaceous subsalt canopy cuttoff (West Laurentian)	219	165	0	0	
j. Cretaceous stratigraphic onlap traps (seaward of BSW)	337	253	36	13	
k. Three-way closures on diapir flanks	769	579	87	30	
F. Sydney Basin					
a. Horton fault blocks	611	222	518	102	
b. Carboniferous inversion folds	313	110	445	89	
c. Windsor Reefs	264	70	240	48	

Table 8. Cumulative		Offshore Nova Scotia - Regional Summary							
results ac	ross the	Natura	al Gas	Natural Ga	s Liquids	Oil Equivalent			
study are	а	BCF	10 ⁹ m ³	MMB	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
a 73	P90	646,156	18,297	5,850	930	206,970	32,906		
lace	P50	717,673	20,322	6,601	1,049	231,430	36,794		
Inris	P10	800,433	22,666	7,510	1,194	259,058	41,187		
	Mean	721,883	20,441	6,650	1,057	232,707	36,997		
e	P90	10,541	298	86.6	13.8	3,461	550		
lace	P50	62,169	1,760	587	93.3	15,573	2,476		
ILY F	P10	139,593	3,953	1,344	214	35,344	5,619		
_ <u>1</u>	Mean	70,424	1,994	669	106	17,962	2,856		
ble d	P90	403,292	11,420	3,838	610	98,557	15,669		
era ske	P50	452,503	12,813	4,360	693	109,454	17,402		
Jnri	P10	511,536	14,485	5,026	799	122,624	19,496		
Re	Mean	455,454	12,897	4,403	700	110,043	17,495		
ble	P90	6,050	171	54.8	8.71	1,707	271		
era 3isk	P50	41,870	1,186	411	65.3	8,990	1,429		
cov Ily F	P10	98,011	2,775	972	155	20,458	3,253		
Re Fu	Mean	48,097	1,362	473	75.2	10,260	1,631		

Table 9. (Cumulative	LaHave Platform Summary							
results ac	ross	Natura	l Gas	Natural Ga	s Liquids	Oil Equivalent			
Region A.		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
8 8	P90	14,174	401	136	21.6	8,685	1,381		
lac	P50	19,472	551	192	30.6	11,491	1,827		
In-P	P10	27,311	773	280	44.4	15,308	2,434		
•	Mean	20,246	573	202	32.2	11,813	1,878		
e	P90	-	-	-	-	-	-		
lac	P50	-	-	-	-	-	-		
ILY F	P10	-	-	-	-	-	-		
_ F	Mean	625	17.7	5.90	0.94	283	45.0		
ble d	P90	9,817	278	93.3	14.8	3,622	576		
era ske	P50	13,720	389	136	21.5	4,933	784		
Jnri	P10	19,466	551	202	32.2	6,764	1,075		
Re	Mean	14,317	405	143	22.7	5,098	810		
ble ked	P90	-	-	-	-	-	-		
coverab Ily Riske	P50	-	-	-	-	-	-		
	P10	-	-	-	-	-	-		
Re Fu	Mean	429	12.1	4.43	0.70	139	22.1		

Table 10.		West Shelburne Summary							
Cumulativ	/e results	Natura	l Gas	Natural Ga	s Liquids	Oil Equivalent			
across Re	gion B.	BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
a 73	P90	37,865	1,072	237	37.7	16,093	2,559		
lace	P50	47,237	1,338	379	60.2	20,076	3,192		
n-P Inri:	P10	59,783	1,693	632	100	25,359	4,032		
	Mean	48,236	1,366	414	65.8	20,480	3,256		
ed	P90	-	-	-	-	-	-		
lace îisk	P50	-	-	-	-	-	-		
ILY F	P10	5,025	142	39.6	6.29	2,269	361		
- E	Mean	1,515	42.9	12.70	2.02	617	98.1		
ble d	P90	20,898	592	143.1	22.7	<mark>6,650</mark>	1,057		
era ske	P50	26,377	747	228	36.2	8,375	1,331		
Cov	P10	33,468	948	380	60.4	10,614	1,687		
Re	Mean	26,842	760	250	39.8	8,538	1,357		
ble	P90	-	-	-	-	-	-		
erab Siske	P50	-	-	-	-	-	-		
cov Ily F	P10	3,212	91.0	24.7	3.93	998	159		
Re Fu	Mean	807	22.9	8.11	1.29	253	40.3		

Table 11.		Shelburne Summary							
Cumulativ	ve results	Natura	l Gas	Natural Ga	s Liquids	Oil Equivalent			
across Re	gion C.	BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
8 8	P90	67,408	1,909	498	79.2	29,593	4,705		
lace	P50	87,794	2,486	645	103	37,278	5,927		
In-P	P10	117,506	3,327	861	137	48,260	7,673		
	Mean	90,658	2,567	666	106	38,274	6,085		
e	P90	-	-	-	-	-	-		
lace îisk	P50	-	-	-	-	-	-		
ILY F	P10	5,241	148	27.0	4.30	3,174	505		
- n	Mean	2,848	80.6	18.2	2.90	1,201	191		
ble d	P90	30,280	857	253	40.2	10,667	1,696		
era ske	P50	38,228	1,083	323	51.3	13,153	2,091		
Jnri	P10	49,679	1,407	415	65.9	16,449	2,615		
Re	Mean	39,409	1,116	330	52.5	13,404	2,131		
ble ked	P90	-	-	-	-	-	-		
coverab Ily Riske	P50	-	-	-	-	-	-		
	P10	1,798	50.9	8.06	1.28	1,101	175		
Re Fu	Mean	879	24.9	5.88	0.935	325	51.6		

Table 12.		Abenaki-Sable Corridor Summary							
Cumulativ	ve results	Natura	al Gas	Natural Ga	s Liquids	Oil Equi	ivalent		
across Re	gion D.	BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
a 73	P90	252,556	7,152	2,272	361	53,532	8,511		
lace	P50	304,762	8,630	2,851	453	64,009	10,177		
n-P Jnri	P10	369,370	10,459	3,589	571	76,990	12,240		
	Mean	309,049	8,751	2,905	462	64,769	10,297		
ede	P90	-	-	-	-	-	-		
lace îisk	P50	29,190	827	271	43.1	7,363	1,171		
ILY F	P10	95,285	2,698	923	147	20,548	3,267		
E _	Mean	38,778	1,098	374.00	59.5	8,886	1,413		
ble d	P90	165,751	4,694	1,562	248	32,881	5,228		
era ske	P50	203,746	5,769	1,972	313	40,053	6,368		
Cov	P10	252,432	7,148	2,539	404	49,479	7,866		
Re	Mean	206,920	5,859	2,020	321	40,700	6,471		
ble	P90	-	-	-	-	-	-		
era Risk	P50	19,343	548	184	29.2	4,276	680		
cov II y F	P10	67,227	1,904	667	106	13,478	2,143		
Re Fu	Mean	27,069	767	263	41.9	5,539	881		

Table 13.			н	uron Corrid	or Summa	ry		
Cumulativ	ve results	Natura	l Gas	Natural Ga	s Liquids	Oil Equivalent		
across Re	gion E.	BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³	
a 73	P90	181,487	5,139	1,767	281	40,710	6,472	
lace	P50	215,339	6,098	2,142	341	48,750	7,751	
Jnri:	P10	256,233	7,256	2,628	418	58,753	9,341	
	Mean	217,616	6,162	2,176	346	49,400	7,854	
e	P90	-	-	-	-	-	-	
lace îisk	P50	17,550	497	174	27.6	3,325	529	
ILY F	P10	66,809	1,892	652	104	14,528	2,310	
_ <u>1</u>	Mean	25,596	725	253	40.3	5,465	868.8	
ble d	P90	130,075	3,683	1,262	201	26,466	4,208	
era ske	P50	154,474	4,374	1,538	245	31,455	5,001	
Cov	P10	185,025	5,239	1,896	301	38,026	6,046	
Re	Mean	156,383	4,428	1,563	249	31,921	5,075	
ble	P90	-	-	-	-	-	-	
era Risk	P50	12,776	362	123	19.6	2,316	368	
cov II y F	P10	48,833	1,383	484	76.9	9,690	1,541	
Re Fu	Mean	18,648	528	186	29.6	3,666	583	

Table 14.				Sydney Basi	n Summar	y	
Cumulativ	ve results	Natura	l Gas	Natural Ga	s Liquids	Oil Equivalent	
across Re	gion F.	BCF	10 ⁹ m ³	MMB	10 ⁶ m ³	MMBOE	10 ⁶ m ³
a 73	P90	15,073	427	113	17.9	20,850	3,315
lace	P50	30,215	856	232	36.8	40,596	6,454
n-P Jnri:	P10	63,296	1,792	514	81.8	83,086	13,210
	Mean	36,070	1,021	286	45.4	47,968	7,626
ed	P90	-	-	-	-	-	-
lace îisk	P50	-	-	-	-	-	-
ILY F	P10	2,160	61.2	20.3	3.23	3,520	560
- P	Mean	1,211	34.3	11.0	1.75	1,729	275
ble d	P90	4,806	136	37.2	5.91	4,414	702
era ske	P50	9,700	275	76.6	12.2	8,752	1,392
Jnri	P10	20,357	576	176	28.0	18,012	2,864
Re	Mean	11,591	328	95.9	15.2	10,387	1,651
ble	P90	-	-	-	-	-	-
coverab Ily Riske	P50	-	-	-	-	-	-
	P10	651	18.4	6.26	1.00	726	115
Re Fu	Mean	345	9.78	3.63	0.577	361	57.3

Acknowledgements

This study benefitted from countless discussions over the past decade with former CNSOPB colleagues (Brent Smith, Dave Brown, Ehsan Belghiszadeh), numerous folks at NRCan (Calvin Campbell, Rob Fensome, Graham Williams, Sonya Dehler, David Piper, Keith Dewing, Elizabeth Atkinson, Ashley Krakowka, John Shimeld), NSDNRR (Fraser Keppie, Natasha MacAdam, Bill Richards, Sandy McMullin, Matt Luheshi), and local universities (Andrew MacRae, Vittorio Maselli, Chris Beaumont), as well as Beicip-Franlab. We also thank Matteo Niccoli for editorial feedback.

Recommended citation:

Deptuck, M.E., Kendell, K.L., Makrides, C., and Altheim, B. (2024) Quantitative petroleum resource assessment in the Canada-Nova Scotia Offshore Area (Scotian Shelf, Scotian Slope, and Sydney Basin), CNSOPB Geoscience Open File Report 2024-001MF, 111 p.

References

Albertz, M., Beaumont, C., Shimeld, J. W., Ings, S. J. and Gradmann, S. (2010) An investigation of salt tectonic structural styles in the Scotian Basin, offshore Atlantic Canada: 1. Comparison of observations with geometrically simple numerical models. Tectonics, 29, TC4017. doi:10.1029/2009TC002539

Beicip-Franlab et al. (2015) South-West Nova Scotia Expansion: Georges Bank and Shelburne Subbasin Study. Nova Scotia Department of Energy Report. https://oera.ca/research/swnova-scotia-expansion-atlas-2015

Scotian Basin Integration Atlas (2023) A collaborative study of stratigraphy, architecture, evolution, and geological prospectivity; A technical collaboration with direct and indirect input provided by Canada-Nova Scotia Offshore Petroleum Board (CNSOPB), Leptis E&P, Stratum Reservoir, Weston Stratigraphic, APT (Canada) Ltd, Andrew MacRae, Bill Richards, and others. Atlas submitted to the Offshore Energy Research Association (OERA), and available online here: <u>Scotian Basin Integration Atlas 2023 | Nova Scotia Offshore Energy Research Association (oera.ca)</u>

Belghiszadeh, E. Kendell, K., Makrides, C., Rhyno, S. (2023) Sable Offshore Energy Project – Resource management study, CNSOPB Report, available at <u>Geoscience Publications</u> | <u>Canada-Nova Scotia Offshore Petroleum Board (CNSOPB)</u> Bishop, A.N. (2020) Greater North Atlantic Liassic Petroleum Systems Synthesis, Technical Report OG-2020-01 https://oera.ca/research/greater-north-atlantic-liassicpetroleum-systems-synthesis (file downloaded in May 2020)

Brown, D.E. (2015) Lacustrine source rock potential in the Middle Triassic – Early Jurassic Chignecto Subbasin, offshore Eastern Canada. In: P.J. Post, J.L. Coleman Jr., N.C. Rosen, D.E. Brown, T. Roberts-Ashby, P. Kahn and M. Rowan (eds) Petroleum Systems in "Rift Basins", 34th Annual Gulf Coast Society – Society of Economic Paleontologists and Mineralogists Perkins-Rosen Research Conference, Houston Texas, December 13-16, 2015, p.8.

Brown, D.E. (2014) Lacustrine source rock potential in the Middle Triassic – Early Jurassic Chignecto Subbasin, offshore Eastern Canada. Geological Association of Canada/ Mineralogical Association of Canada Annual Meeting, University of New Brunswick, Fredericton, New Brunswick, May 21-23, 2014.

Campbell, D.C., Shimeld, J., Deptuck, M.E., Mosher, D.C. (2015) Seismic stratigraphic framework and depositional history of a large Upper Cretaceous and Cenozoic depocenter off southwest Nova Scotia, Canada. Marine and Petroleum Geology, 65: 22–42.

Campbell, D.C., and Mosher, D.C. (2015) Geophysical evidence for widespread Cenozoic bottom current activity from the continental margin of Nova Scotia, Canada, Marine Geology, 378: 237-260.

Cummings, D.C., and Arnott, R.W.C. (2005) Growth-faulted shelf-margin deltas: a new (but old) play type, offshore Nova Scotia. Bulletin of Canadian Petroleum Geology, 53: 211-236.

Cummings, D.C., Hart, B.S., and Arnott, R.W.C. (2006) Sedimentology and stratigraphy of a thick, areally extensive fluvial-marine transition, Missisauga Formation, offshore Nova Scotia and its correlation with shelf margin and slope strata. Bulletin of Canadian Petroleum Geology, 54: 152-174.

Deptuck, M.E. (2008) NS08-2 Call for Bids – Sub-regional geology and exploration potential for Parcels 1 and 2, Central Scotian Slope. 40 p. <u>Geoscience Publications | Canada-Nova</u> <u>Scotia Offshore Petroleum Board (CNSOPB)</u>

Deptuck, M.E. (2011) Proximal to distal postrift structural provinces on the western Scotian Margin, offshore Eastern Canada: Geological context and parcel prospectivity for Callfor-Bids NS11-1, Canada-Nova Scotia Offshore Petroleum Board, Geoscience Open File Report (GOFR) 2011-001MF, 42p. Geoscience Publications | Canada-Nova Scotia Offshore Petroleum Board (CNSOPB)

Deptuck, M.E (2020) Nova Scotia's volcanic passive margin exploration history, geology, and play concepts off southwestern Nova Scotia. CNSOPB Geoscience Open File Report 2020-001MF, 32 p. <u>Geoscience Publications | Canada-Nova Scotia Offshore Petroleum Board (CNSOPB)</u>

Deptuck, M.E. and Altheim, B. (2018) Rift basins of the central LaHave Platform, offshore Nova Scotia. CNSOPB Geoscience Open File Report 2018-001MF, 54 p. Available here: <u>Geoscience Publications | Canada-Nova Scotia Offshore</u> <u>Petroleum Board (CNSOPB)</u>

Deptuck, M.E. and Campbell, D.C. (2012) Wide-spread erosion and mass failure from the ~51 Ma Montagnais marine bolide impact off southwestern Nova Scotia, Canada, Canadian Journal of Earth Sciences, 49: 1567-1594.

Deptuck, M.E. and Kendell, K. (2012) Contrasting salt tectonic styles on the western versus central parts of the Scotian Margin, offshore Nova Scotia, CNSOPB Geoscience Open File Poster 2012-001PF, 2 panels <u>Geoscience Publications</u> <u>Canada-Nova Scotia Offshore Petroleum Board (CNSOPB)</u>

Deptuck, M.E. and Kendell, K.L. (2017) Chapter 13: A review of Mesozoic salt tectonics along the Scotian margin, eastern Canada, In: J. Soto, J. Flinch, and G. Tari, (Eds), Permo-Triassic Salt Provinces of Europe, North Africa and Central Atlantic: Tectonics and Hydrocarbon Potential, Elsevier, 287-312.

Deptuck, M.E. and Kendell, K.L. (2020) Atlas of 3D seismic surfaces and thickness maps, central and southwestern Scotian Slope. CNSOPB Geoscience Open File Report 2020-002MF – 2020-006MF, 59 panels <u>Geoscience Publications</u> | <u>Canada-Nova Scotia Offshore Petroleum Board (CNSOPB)</u>

Deptuck, M.E. and Kendell, K.L. (2022) Geology of the central Scotian Shelf and Slope - Call for Bids NS22-1. CNSOPB Geoscience Open File Report 2022-001MF, 24 p. <u>Geoscience</u> <u>Publications | Canada-Nova Scotia Offshore Petroleum Board</u> (CNSOPB)

Deptuck, M.E., MacRae, R.A., Shimeld, J.W., Williams, G., and Fensome, R. (2003) Revised Upper Cretaceous and lower Paleogene lithostratigraphy and depositional history of the Jeanne d'Arc Basin, offshore Newfoundland, Canada, AAPG Bulletin, 87: 1459-1483

Deptuck, M.E., Kendell, K. and Smith, B. (2009) Complex deepwater fold-belts in the SW Sable Subbasin, offshore Nova Scotia, Extended Abstract, 2009 CSPG CSEG CWLS Convention, Calgary, Alberta, 4 p. <u>Geoscience Publications | Canada-Nova</u> <u>Scotia Offshore Petroleum Board (CNSOPB)</u>

Deptuck, M.E., Kendell, K., Brown, D. and Smith, B. (2014) Seismic stratigraphic framework and structural evolution of the eastern Scotian Slope: geological context for the NS14-1 Call for Bids area, offshore Nova Scotia. CNSOPB Geoscience Open File Report 2014-001MF, 58 p. <u>Geoscience Publications</u> | <u>Canada-Nova Scotia Offshore Petroleum Board (CNSOPB)</u>

Deptuck, M.E., Brown, D.E. and Altheim, B. (2015). Call for Bids NS15-1 – Exploration history, geologic setting, and exploration potential: Western and Central regions. CNSOPB Geoscience Open File Report 2015-001MF, 49 p. <u>Geoscience Publications</u> | <u>Canada-Nova Scotia Offshore Petroleum Board (CNSOPB)</u>

Dore, G. and Robbins, J. (2005) The buzzard Field, In: A.G. Dore and B.A Vinning (Eds) Petroleum Geology: North-West Europe and Global Perspectives – Proceedings of the 6th Petroleum Geology Conference, 241-252.

Durling, P., and Marillier, F. (1990) Structural trends and basement rock subdivisions in the western Gulf of St. Lawrence, Northern Appalachians. Atlantic Geology, 26: 75-95.

Durling, P., and Marillier, F. (1993) Tectonic setting of Middle Devonian to Lower Carboniferous rocks in the Magdalen Basin. Atlantic Geology, 29: 199-217.

Eliuk, L.S. (1978) The Abenaki Formation, Nova Scotia Shelf, Canada - A depostional and diagenetic model for a Mesozoic carbonate platform. Bulletin of Canadian Petroleum Geology, 26: 424-514.

Fensome, R.A., Crux, J.A., Gard, I.G., MacRae, R.A., Williams, G.L., Thomas, F.C., Fiorini, F., and Wach, G. (2008) The last 100 million years on the Scotian Margin, offshore eastern Canada: an event-stratigraphic scheme emphasizing biostratigraphic data. Atlantic Geology, 44: 93-126.

Fowler, M. (2019) Jurassic oils and source rocks of Morocco – Part 1, OERA Report pp 67 (downloaded from OERA.ca in September 2021)

Fowler, M. (2020) Review of geochemical evidence for multiple source rocks on the Scotian Shelf, OERA Report pp 254 (downloaded from OERA.ca in September 2021)

Fowler, M. and Webb, J. (2016) Geochemistry Data Report for 2016 Scotian Slope Piston Coring Program, 620 p. (Report downloaded in April 2020 from https://oera.ca/research/piston-coring-geochemistryprogram)

Fonnesu, M., Palermob, D., Galbiatia, M., Marchesinia, M., Bonaminia, E., and Bendiasc, D. (2019) A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique, Marine Petroleum Geology, 111: 179-201.

Gibling, M.R., Culshaw, N., Rygel, M.C, and Pascucci, V. (2008) Chapter 6 - The Maritimes Basin of Atlantic Canada: Basin Creation and Destruction in the Collisional Zone of Pangea In: A.D. Maill (Ed.), Sedimentary Basins of the World, Volume 5: The Sedimentary Basins of the United States and Canada, Elsevier, 211-244.

Given, M.M. (1977) Mesozoic and Early Cenozoic geology of offshore Nova Scotia, Bulletin of Canadian Petroleum Geology, 25: 63-91.

Gong, C., Wang, Y., Zhu, W., Li, W., Xu, Q. (2013) Upper miocene to quaternary unidirectionally migrating deep-water channels in the pearl river mouth basin, northern south China sea. AAPG Bull. 97, 285–308

Goodway, B., Szelewski, C., Overell, S., Corbett, N. and Skrypnek, T (2008) Calibrated AVO and LMR analysis using a new DHI flat-spot AVO class 6 fluid contact to mitigate reservoir risk at Stonehouse, offshore Nova Scotia, Canadian Society of Exploration Geophysicists Recorder, 22: 23-32.

Hanafi B.R., Withjack M.O., Durcanin M.A., and Schlische R.W. (2022) The development of the eastern Orpheus rift basin, offshore eastern Canada: A case study of the interplay between rift related faulting and salt deposition and flow. Marine and Petroleum Geology, 139: 105629, doi:https://doi.org/10.1016/j.marpetgeo.2022.105629.

Holser, W. T., Clement, G. P., Jansa, L. F., & Wade, J. A. (1988). Evaporite deposits of the north Atlantic rift. In W. Manspeizer (Ed.), Triassic-Jurassic rifting: Continental breakup and the origin of the Atlantic Ocean and passive margins (part B), Amsterdam: Elsevier, 525–556.

Ings, S.J., and Shimeld, J.W. (2006) A new conceptual model for the structural evolution of a regional salt detachment on the northeast Scotian margin, offshore eastern Canada, AAPG Bulletin, 90: 1407-1423.

Ings, S.J., Shimeld, J.W., MacRae, R.A., and Pe-Piper, G. (2005) Diagenesis and porosity reduction in the Late Cretaceous Wyandot Formation, Offshore Nova Scotia: a comparison with Norwegian North Sea chalks. Bulletin of Canadian Petroleum Geology, 53: 237-249.

Jansa, L.F., and Pe-Piper, G. (1987) Identification of an underwater extraterrestrial impact crater. Nature, 327: 612-614.

Jansa, L.F., and Wade, J.A. (1975) Geology of the continental margin off Nova Scotia and Newfoundland. In W.J.M. Van Der Linden and J.A. Wade (eds), Offshore Geology of Eastern Canada, Geological Survey of Canada Paper 74-30, 2: 51-105.

Jermannaud, P., L. Gindre-Chanu, L., Deptuck, M.E., Kendell, K., Keppie, D.F., Cuilhe, L., Doublet, S. (2023) Detailed sequence stratigraphy and Gross Depositional Environment mapping of the offshore Nova Scotia Margin, European Association of Geoscientists & Engineers, 84th EAGE Annual Conference & Exhibition, Jun 2023, Volume 2023, 1 – 5 DOI: https://doi.org/10.3997/2214-4609.202310787

Kendell, K. and Deptuck, M.E. (2012) Lower Cretaceous shelfedge trajectories, shelf-indenting canyons and the potential transfer of coarser clastics into deeper water, Sable Subbasin, offshore Nova Scotia, CNSOPB Geoscience Open File Poster 2012-002PF, 2 panels <u>Geoscience Publications | Canada-Nova</u> <u>Scotia Offshore Petroleum Board (CNSOPB)</u>

Kendell, K.L. (2012) Variations in salt expulsion style within the Sable Canopy Complex, central Scotian margin. Can. J. Earth Sci. 49(12), 1504–1522. <u>https://doi.org/10.1139/e2012-069</u>

Kendell, K.L., Smith, B.M. and Brown, D.E. (2013) Geological context and parcel prospectivity for Call for Bids NS13-1: Seismic interpretation, source rocks and maturation, exploration history and potential play types of the central and eastern Scotian Shelf. CNSOPB Call for Bids Summary Document, 64p. <u>Geoscience Publications | Canada-Nova Scotia</u> <u>Offshore Petroleum Board (CNSOPB)</u>

Kendell, K., Deptuck, M., Smith, B. and Brown, D. (2016) Call for Bids NS16-1 - Exploration history, geological setting and exploration potential of the central Scotian Slope. Geoscience Open File Report 2016-002MF, Canada-Nova Scotia Offshore Petroleum Board, 42 p. <u>Geoscience Publications | Canada-Nova Scotia Offshore Petroleum Board (CNSOPB)</u>

Kendell, K. L., Brown, D.E. and Rhyno, S. (2017) Call for Bids NS17-1 – Regional exploration history, geological setting, source rocks and exploration potential of Sydney Basin, offshore Nova Scotia. CNSOPB Geoscience Open File Report 2017-001MF, 50 p. <u>Geoscience Publications | Canada-Nova</u> <u>Scotia Offshore Petroleum Board (CNSOPB)</u>

Kidston, A.G., Brown, D.E., Smith, B.M., and Altheim, B. (2005) The Upper Jurassic Abenaki Formation, offshore Nova Scotia: A seismic and geologic perspective, Canada Nova Scotia Offshore Petroleum Board, Halifax, Nova Scotia, 168 p. <u>Geoscience Publications | Canada-Nova Scotia Offshore</u> <u>Petroleum Board (CNSOPB)</u>

Kidston, A.G., Smith, B.M., Brown, D.E., Makrides, C., Altheim, B. (2007) Nova Scotia deepwater post-drill analysis 1982-2004. Halifax, Nova Scotia, Canada, Canada-Nova Scotia Offshore Petroleum Board, 182 p. <u>Geoscience Publications | Canada-Nova Scotia Offshore Petroleum Board (CNSOPB)</u>

Leleu, S., Hartley, A.J. and Williams, B.P.J. (2009) Large-scale alluvial architecture and correlation in a Triassic pebbly braided river system, lower Wolfville Formation (Fundy Basin, Nova Scotia, Canada). Journal of Sedimentary Research, 79: 266-286. MacRae, R.A., and Pe-Piper, G. (2022) Intra-salt palynology events in the Late Triassic-Early Jurassic of the southern Grand Banks: Implications for regional and trans-Atlantic correlation and paleoenvironments (Abstract). In Conjugate Margins Conference 2022. Marrakech, Morocco.

Mader, N.K., Redfern, J., and Ouataoui, M.U. (2017) Sedimentology of the Essaouira Basin (Meskala Field) in context of regional sediment distribution patterns during upper Triassic pluvial events. Journal of African Earth Sciences, 130: 293-318.

Marzoli, A., Renne, P.R., Piccirillo, E.M., Ernesto, M., Bellieni, G. & De Min, A. (1999) Extensive 200-million-year-old continental flood basalts of the Central Atlantic magmatic province. Science, 284: 616–618.

McHone, J. G. (1996) Broad-terrane Jurassic flood basalts across northeastern North America. Geology, 24: 319-322.

McAlpine, K.D., Deptuck, M.E., Wielens, J.B.W., Jauer, C.D., and Moir, P.N. (2004a) Lithostratigraphy I, Jeanne d'Arc Basin Cross Sections A-A' and B-B', <u>In</u> Moir, P.N., McAlpine, K.D., Edwards, A., Deptuck, M.E., Bell, J.S., Wielens, J.B.W., Wade, J.A., and Jauer, C.D. East Coast Basin Atlas Series: Grand Banks of Newfoundland – Lithostratigraphy. Geological Survey of Canada, Open File 4640; 4 sheets.

McIver, N.L., (1972) Cenozoic and Mesozoic Stratigraphy of the Nova Scotia Shelf. Canadian Journal of Earth Sciences, 9: 54-70

Megson, J. and Tygesen, T. (2005) The North Sea Chalk: an underexplored and underdeveloped play. In: DORE ', A.G. and VINING, B. A. (eds) Petroleum Geology: North-West Europe and Global Perspectives—Proceedings of the 6th Petroleum Geology Conference, 159–168. Petroleum Geology Conferences Ltd. Published by the Geological Society, London.

Morabet, A.M., Bouchta, R. and Jabour, H. (1998) An overview the petroleum systems of Morocco. In: D.S. MacGregor, R.T.J. Moody, and D.D. Clark-Lowes (eds) Geological Society of London Special Publication, 132: 283-296.

Moscardelli, L. Ochoa, J., Lunt, I., and Zahm, L. (2019) Mixed siliciclastic–carbonate systems and their impact for the development of deep-water turbidites in continental margins: A case study from the Late Jurassic to Early Cretaceous Shelburne subbasin in offshore Nova Scotia, AAPG Bulletin, 103: 2487-2520.

Mossman, D.J. (1992) Carboniferous source rocks of the Canadian Atlantic Margin. Geological Society of London Sp. Pub. 62: 25-34.

Offshore Energy Technical Research Association (OETR) et al. (2011) Play Fairway Analysis Atlas - Offshore Nova Scotia, Nova Scotia Department of Energy Report, NSDOE Records Storage File No. 88-11-0004-01, 347p. <u>Research Portal | Nova Scotia</u> Offshore Energy Research Association (oera.ca)

Olsen, P.E. (1985) Distribution of organic-matter-rich lacustrine rocks in the early Mesozoic Newark Supergroup. In: G.R. Robinson Jr. and A.J. Froelich (eds), Proceedings of the 2nd USGS Workshop on the Early Mesozoic Basins of Eastern United States, United States Geological Survey, Bulletin 946: 61-64.

Olsen, P.E. (1997) Stratigraphic record of the early Mesozoic breakup of Pangea in the Laurasia-Gondwana rift system. Annual Reviews of Earth and Planetary Science, 25: 337-401.

Pascucci, V. Gilbing, M.R., and Williamson, M.A. (1999) Seismic stratigraphic analysis of Carboniferous strata on the Burin Platform, offshore Eastern Canada. Bulletin of Canadian Petroleum Geology, 47: 298-316.

Pascucci, P. Gibling, M.R. and Williamson, M.A. (2000) Late Paleozoic to Cenozoic history of the offshore Sydney Basin, Atlantic Canada. Canadian Journal of Earth Sciences, 37: 1165-1165.

Piper, D.J.W., and Deptuck, M. (1997) Fine-grain turbidites of the Amazon fan: facies characterization and interpretation, In: R.D. Flood, D.J.W. Piper, A. Klaus and L.C. Petersen (Eds), Proceedings of the Ocean Drilling Program - Scientific Results, 155: 109-146.

Piper, D.J.W., and Normark, W.R. (2001) Sandy fans: From Amazon to Hueneme and beyond, AAPG Bulletin, 85: 1407-1438.

Piper, D.J.W., Noftall, R. and Pe-Piper, G. (2010) Allochthonous prodeltaic sediment facies in the lower Cretaceous at the Tantallon M-41 well: Implications for the deep-water Scotian Basin, AAPG Bulletin, 94: 87-104.

Post, P. J. and Coleman, J.L. (2015) Mesozoic rift basins of the U.S. central Atlantic offshore: comparisons with onshore basins, analysis, and potential petroleum prospectivity, In: P.J. Post, J.L. Coleman, N.C. Rosen et al (Eds) Petroleum Systems in "Rift" Basins, 34th Annual GCSSEPM Foundation Perkins-Rosen Research Conference, p. 1-68.

Rodrigues, S., Deptuck, M.E., Kendell, K.L., Campbell, C., Hernandez-Molina, F.J. (2022) Cretaceous to Eocene mixed turbidite-contourite systems offshore Nova Scotia (Canada): Spatial and temporal variability of down- and along-slope processes. Mar. Pet. Geol. 138: 105572.

Ryan, R.J., Grist, A., and Zentilli, M. (1991) The thermal evolution of the Maritimes Basin: Evidence from apatite fission track analysis. In Nova Scotia Department of Mines and Energy, Report of Activities. Edited by D. MacDonald. Nova Scotia Department of Mines and Energy, Report 91-1, pp. 27-32. Savard, M.M. (1996) Pre-ore burial dolomitization adjacent to the carbonate-hosted Gays River Zn -Pb deposit, Nova Scotia, Canadian Journal of Earth Sciences, 33: 303-315.

Shimeld, J., (2004) A comparison of salt tectonic sub-provinces beneath the Scotian slope and Laurentian Fan, in P.J. Post, D.L. Olson, K.T. Lyons, S.L. Palmes, P. F. Harrison, and N.C. Rosen, eds., Salt-sediment interactions and hydrocarbon prospectivity: Concepts, applications and case studies for the 21st century: 24th Annual Gulf Coast Section SEPM Foundation Bob F. Perkins Research Conference Proceedings, p. 291–306

Shimeld, J. and Deptuck, M. (1998) Lithostratigraphic correlation of the upper Sydney Mines Formation in the Sydney Basin (Donkin to Point Aconi), northeastern Nova Scotia. Geological Survey of Canada, Open File 3673, 1 Sheet <u>https://doi.org/10.4095/210087</u>

Smith, B.M., Deptuck, M.E., and Kendell, K.L. (2010) Upper Cretaceous mass transport systems above the Wyandot Formation chalk, offshore Nova Scotia. In: D. Mosher et al. (Eds.) Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research. Kluger-Springer Book Series, 28: 605-616. <u>Geoscience</u> <u>Publications | Canada-Nova Scotia Offshore Petroleum Board</u> (CNSOPB)

Smith, B., Makrides, C., Altheim B. and Kendell K.L. (2014). Resource Assessment of Undeveloped Significant Discoveries on the Scotian Shelf. Canada-Nova Scotia Offshore Petroleum Board, 182p. <u>Geoscience Publications | Canada-Nova Scotia</u> <u>Offshore Petroleum Board (CNSOPB)</u>

Smith, B.M., Kendell K., Makrides, C., Brown, D.E. (2016) Call for Bids NS16-1 – Exploration history, geologic setting, and exploration potential: Sable Subbasin Region. Geoscience Open File Report, 2016-001MF. Canada -Nova Scotia Offshore Petroleum Board, 19p. <u>Geoscience Publications | Canada-Nova</u> <u>Scotia Offshore Petroleum Board (CNSOPB)</u> Smith, B.M., Kendell K., Makrides, C., Brown, D.E. (2018) Call for Bids NS18-3 – Seismic Interpretation, well summaries, source rock, and exploration leads in the Central Scotian Shelf, Sable Subbasin. CNSOPB Geoscience Open File Report 2018-002MF, 27 p. <u>Geoscience Publications | Canada-Nova Scotia</u> Offshore Petroleum Board (CNSOPB)

Swanson, M.T. (1986). Pre-existing fault control for Mesozoic basin formation in eastern North America. Geology, 14: 419–422.

Tari, G., Flinch, J.F., Soto, J.I. (2017) Chapter 6: Petroleum systems and play types associated with Permo-Triassic salt in Europe, North African, and the Atlantic region, In: J. Soto, J. Flinch, and G. Tari, (Eds), Permo-Triassic Salt Provinces of Europe, North Africa and Central Atlantic: Tectonics and Hydrocarbon Potential, Elsevier, p. 129-156.

Wade, J.A. and MacLean, B.C. (1990) The geology of the Southeastern Margin of Canada, Chapter 5, In: M.J. Keen and G.L. Williams (eds), Geology of the Continental Margin of Eastern Canada, Geological Survey of Canada, The Geology of Canada, p. 224-225.

Waldron, J.W.F., Barr, S.M., Park, A.F., White, C.E., and Hibbard, J. (2015) Late Paleozoic strike-slip faults in Maritime Canada and their role in the reconfiguration of the northern Appalachian orogen. Tectonics, vol. 34, no. 8, p.1661-1684, eological Society of America Bulletin, 125: 945-960.

Welsink., H.J., Dwyer, J.D. and Knight, R.J. (1989) Tectonostratigraphy of the passive margin off Nova Scotia, Chapter 14, In: A.J. Tankard and H.R. Balkwill (eds) Extensional Tectonics and Stratigraphy of the North Atlantic Margins, AAPG Memoir 46: 215-231.

Weston, J.F., MacRae, R.A., Ascoli, P., Cooper, M.K.E., Fensome, R.A., Shaw, D. and Williams, G.L. (2012) A revised biostratigraphic and well-log sequence stratigraphic framework for the Scotian Margin, offshore eastern Canada, Canadian Journal of Earth Sciences, 49: 1417-1462.

		LaHav	ve Pre-salt	Rotated F	ault Blocks	and Inver	sions
		Natura	al Gas	Natural G	as Liquids	Oil Equ	ivalent
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
0.7	P90	5,157	146	46.4	7.38	2,956	470
lace	P50	7,884	223	77.7	12.3	4,663	741
In-P	P10	11,965	339	126	20.0	7,179	1,141
	Mean	8,263	234	82.6	13.1	4,907	780
50	P90	-	-	-	-	-	-
lace	P50	-	-	-	-	-	-
	P10	-	-	-	-	-	-
ū	Mean	21.4	0.60	0.22	0.03	12.5	1.99
ple	P90	3,839	109	34.4	5.48	1,416	225
era	P50	5,893	167	58.1	9.24	2,206	351
SCOV	P10	9,068	257	94.5	15.0	3,369	536
Å	Mean	6,200	176	61.9	9.85	2,320	369
ble	P90	-	-	-	-	-	-
eral	P50	-	-	-	-	-	-
	P10	-	-	-	-	-	-
Re	Mean	15.9	0.451	0.160	0.025	5.82	0.925

Appendix 1 – A. LaHave Platform

		LaH	lave Carbo	oniferous T	urtles (Yaı	mouth Ba	sin)	
		Natur	al Gas	Natural G	as Liquids	Oil Equivalent		
		BCF	10 ⁹ m ³	MMB	10 ⁶ m ³	MMBOE	10 ⁶ m ³	
	P90	446	12.6	4.08	0.65	568	90.4	
lace	P50	795	22.5	7.76	1.23	1,009	160	
In-P Jnri:	P10	1,359	38.5	14.2	2.26	1,736	276	
	Mean	856	24.2	8.57	1.36	1,090	173	
ed	P90	-	-	-	-	-	-	
lace ?isk	P50	-	-	-	-	-	-	
II-P	P10	-	-	-	-	-	-	
L L	Mean	8.93	0.25	0.09	0.01	11.3	1.80	
ble	P90	129	3.64	1.20	0.19	119	18.9	
eral	P50	267	7.57	2.61	0.41	220	35.0	
Unri	P10	515	14.6	5.31	0.84	392	62.3	
Re	Mean	300	8.48	3.00	0.48	241	38.4	
ole ed	P90	-	-	-	-	-	-	
eral 3isk	P50	-	-	-	-	-	-	
illy F	P10	-	-	-	-	-	-	
Fu	Mean	3.09	0.088	0.030	0.005	2.55	0.405	

		Lahave Carboniferous Rotated Fault Blocks and Inversions					
		Natural Gas		Natural Gas Liquids		Oil Equivalent	
		BCF	10 ⁹ m ³	MMB	10 ⁶ m ³	MMBOE	10 ⁶ m ³
In-Place Unrisked	P90	697	19.7	6.44	1.02	887	141
	P50	1,218	34.5	11.9	1.89	1,548	246
	P10	2,059	58.3	21.4	3.41	2,632	418
	Mean	1,311	37.1	13.1	2.08	1,671	266
In-Place Fully Risked	P90	-	-	-	-	-	-
	P50	-	-	-	-	-	-
	P10	-	-	-	-	-	-
	Mean	12.5	0.35	0.13	0.02	15.8	2.51
ble d	P90	202	5.71	1.87	0.30	187	29.8
Recoveral Unriske	P50	412	11.7	4.02	0.64	338	53.7
	P10	779	22.0	8.05	1.28	599	95.2
	Mean	459	13.0	4.59	0.73	370	58.9
Recoverable Fully Risked	P90	-	-	-	-	-	-
	P50	-	-	-	-	-	-
	P10	-	-	-	-	-	-
	Mean	4.42	0.125	0.045	0.007	3.50	0.556

		Lahave Listric Fault Rollovers and Forced Folds					
		Natural Gas		Natural Gas Liquids		Oil Equivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
In-Place Unrisked	P90	4,691	133	43.8	6.96	1,994	317
	P50	8,926	253	87.0	13.8	3,775	600
	P10	16,166	458	168	26.7	6,843	1,088
	Mean	9,816	278	98.0	15.6	4,145	659
In-Place Fully Risked	P90	-	-	-	-	-	-
	P50	-	-	-	-	-	-
	P10	-	-	-	-	-	-
	Mean	553	15.7	5.49	0.87	234	37.2
Recoverable Unrisked	P90	3,499	99.1	32.7	5.19	1,044	166
	P50	6,726	190	65.3	10.4	1,983	315
	P10	12,083	342	126	20.0	3,557	566
	Mean	7,360	208	73.5	11.7	2,166	344
Recoverable Fully Risked	P90	-	-	-	-	-	-
	P50	-	-	-	-	-	-
	P10	-	-	-	-	-	-
	Mean	414	11.7	4.11	0.653	122	19.3

LaHave Listric Fault Rollovers and Forced Folds Potential Resource - Fully Risked (MMB) P10 0 10.0% 1.0 0.8 Probability 9.0 0.2 Mean = 122 0.0 500 0 1000 1500 2000 2500 3000 Potential Resource - Fully Risked (MMB)

		W Shelburne - Pre-salt rotated fault blocks					
		Natural Gas		Natural Gas Liquids		Oil Equivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
In-Place Unrisked	P90	2,077	58.8	18.7	2.98	1,127	179
	P50	3,225	91.3	31.6	5.03	1,788	284
	P10	4,908	139	52.0	8.27	2,792	444
	Mean	3,374	95.5	33.8	5.37	1,885	300
In-Place Fully Risked	P90	-	-	-	-	-	-
	P50	-	-	-	-	-	-
	P10	-	-	-	-	-	-
	Mean	7.33	0.21	0.08	0.01	4.01	0.64
ble d	P90	1,545	43.8	13.9	2.21	547	87.0
Recoveral Unriskee	P50	2,411	68.3	23.6	3.76	859	137
	P10	3,695	105	39.1	6.21	1,334	212
	Mean	2,531	71.7	25.3	4.03	906	144
Recoverable Fully Risked	P90	-	-	-	-	-	-
	P50	-	-	-	-	-	-
	P10	-	-	-	-	-	-
	Mean	5.45	0.154	0.056	0.009	1.94	0.308

Appendix 2 – B. West Shelburne Corridor

		W Sh	W Shelburne Jurassic Listric Fault Rollovers - Shelf						
		Natur	al Gas	Natural G	as Liquids	Oil Equivalent			
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
с. Т	P90	2,320	65.7	21.3	3.38	920	146		
lace skee	P50	4,207	119.1	41.1	6.54	1,695	269		
In-P Jnri:	P10	7,391	209	76.3	12.14	3,017	480		
_	Mean	4,585	129.8	45.9	7.30	1,851	294		
ed	P90	-	-	-	-	-	-		
lace îisk	P50	-	-	-	-	-	-		
In-P	P10	-	-	-	-	-	-		
L L	Mean	203.32	5.76	2.04	0.32	81.2	12.9		
ble d	P90	1,378	39.0	12.7	2.01	403	64.0		
eral ske	P50	2,516	71.3	24.6	3.90	736	117		
Cov	P10	4,458	126	46.0	7.31	1,313	209		
Be	Mean	2,751	77.9	27.6	4.38	806	128		
ble	P90	-	-	-	-	-	-		
eral 3isk	P50	-	-	-	-	-	-		
scov IIIy F	P10	-	-	-	-	-	-		
Fu	Mean	122	3.46	1.23	0.195	35.6	5.65		

		W She	W Shelburne Cretaceous Listric Fault Rollovers - Shelf						
		Natura	al Gas	Natural G	as Liquids	Oil Equivalent			
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
с. Т	P90	2,101	59.5	19.3	3.06	864	137		
lace skee	P50	3,850	109	37.7	6.00	1,598	254		
In-P Jnri	P10	6,914	196	71.3	11.3	2,875	457		
_	Mean	4,224	120	42.2	6.72	1,760	280		
ed	P90	-	-	-	-	-	-		
lace ?isk	P50	-	-	-	-	-	-		
II - P	P10	-	-	-	-	-	-		
F	Mean	188	5.33	1.91	0.30	78.1	12.4		
ble d	P90	1,567	44.4	14.3	2.28	457	72.7		
era	P50	2,880	81.6	28.3	4.50	841	134		
Unri	P10	5,207	147	53.6	8.53	1,512	240		
Re	Mean	3,168	89.7	31.7	5.04	924	147		
ble	P90	-	-	-	-	-	-		
eral Risk	P50	-	-	-	-	-	-		
scov IIIy F	P10	-	-	-	-	-	-		
Re Fu	Mean	141	3.98	1.43	0.227	40.9	6.51		

W Shelburne Cretaceous Listric Fault Rollovers - Shelf

		w	W Shelburne Sub-Salt Canopy Cut-off (Slope)						
		Natura	al Gas	Natural G	as Liquids	Oil Equ	ivalent		
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
0 T	P90	1,241	35.1	11.4	1.82	410	65.1		
lace skee	P50	2,347	66.5	23.1	3.67	779	124		
In-P Jnri	P10	4,220	119	43.7	6.95	1,411	224		
_	Mean	2,574	72.9	25.8	4.10	858	136		
ed	P90	-	-	-	-	-	-		
lace isk	P50	-	-	-	-	-	-		
II-P	P10	-	-	-	-	-	-		
Ŀ	Mean	70.0	1.98	0.71	0.11	23.5	3.74		
ble d	P90	740	21.0	6.81	1.08	191	30.4		
eral	P50	1,405	39.8	13.8	2.20	361	57.3		
Cov	P10	2,552	72.3	26.5	4.21	654	104		
Re	Mean	1,544	43.7	15.5	2.46	398	63.3		
ble	P90	-	-	-	-	-	-		
eral Risk	P50	-	-	-	-	-	-		
scov IIIy F	P10	-	-	-	-	-	-		
Re Fu	Mean	41.7	1.18	0.42	0.067	10.8	1.72		

		w	Shelburne	- Cretace	ous Stratig	raphic On	lap	
		Natura	al Gas	Natural G	as Liquids	Oil Equ	Oil Equivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³	
0.7	P90	5,759	163	53.1	8.45	2,909	462	
lace skee	P50	10,543	299	103	16.32	5,438	865	
In-P Jnri	P10	17,434	494	183	29.12	9,226	1,467	
_	Mean	11,187	317	112	17.77	5,824	926	
ed	P90	-	-	-	-	-	-	
lace îisk	P50	-	-	-	-	-	-	
II P	P10	-	-	-	-	-	-	
3	Mean	253	7.17	2.55	0.41	133	21.1	
ble d	P90	4,293	122	39.7	6.31	1,446	230	
eral	P50	7,884	223	76.8	12.2	2,677	426	
Cov	P10	13,176	373	137	21.8	4,490	714	
- Be	Mean	8,390	238	83.8	13.3	2,854	454	
ble	P90	-	-	-	-	-	-	
eral Risk	P50	-	-	-	-	-	-	
scov IIIy F	P10	-	-	-	-	-	-	
Re Fu	Mean	190	5.38	1.92	0.305	64.8	10.3	

W Shelburne - Cretaceous Stratigraphic Onlap Potential Resource - Fully Risked (MMB)

		W Shell	burne - Cr	etaceous t	hree way t	raps on sal	t flanks
		Natura	al Gas	Natural G	as Liquids	Oil Equivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
a 7	P90	2,675	75.7	24.5	3.89	1,372	218
lace skee	P50	4,875	138.0	47.7	7.59	2,530	402
In-P Jnri	P10	8,195	232	85.1	13.5	4,302	684
_	Mean	5,200	147.2	52.0	8.27	2,714	431
ed	P90	-	-	-	-	-	-
lace iisk	P50	-	-	-	-	-	-
II-P	P10	-	-	-	-	-	-
L L	Mean	168	4.76	1.65	0.26	89.1	14.2
ble	P90	1,992	56.4	18.1	2.88	677	108
eral	P50	3,645	103	35.7	5.68	1,241	197
Unri	P10	6,165	175	64.3	10.23	2,095	333
Re	Mean	3,901	110	39.0	6.20	1,329	211
ble ed	P90	-	-	-	-	-	-
eral 3isk	P50	-	-	-	-	-	-
illy F	P10	-	-	-	-	-	-
Fu	Mean	126	3.56	1.23	0.196	43.7	6.95

W Shelburne - Cretaceous Three Way Traps on Salt Flanks Potential Resource - Fully Risked (MMB)

			W Shelbı	ırne - Chal	k Play - T50	closures		
		Natura	al Gas	Natural G	as Liquids	Oil Equ	Oil Equivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³	
	P90	9,500	269	52.1	8.29	3,066	487	
lace skee	P50	16,152	457	95.2	15.1	5,275	839	
In-P Jnri	P10	25,988	736	164	26.1	8,543	1,358	
_	Mean	17,093	484	103	16.3	5,589	889	
ed	P90	-	-	-	-	-	-	
lace ?isk	P50	-	-	-	-	-	-	
II - P	P10	-	-	-	-	-	-	
L L	Mean	531	15.0	3.17	0.50	174	27.7	
ble d	P90	2,072	58.7	11.4	1.82	665	106	
eral	P50	4,098	116	24.2	3.85	1,227	195	
Unri	P10	7,618	216	47.3	7.53	2,106	335	
Re	Mean	4,556	129	27.3	4.35	1,321	210	
ble	P90	-	-	-	-	-	-	
eral Risk	P50	-	-	-	-	-	-	
scov IIIy F	P10	-	-	-	-	-	-	
Re Fu	Mean	144	4.08	0.86	0.136	41.2	6.55	

W Shelburne - Chalk Play - T50 Closures Potential Resource - Fully Risked (MMB)

		Shelburne - Pre-salt rotated fault blocks						
		Natura	al Gas	Natural G	as Liquids	Oil Equ	ivalent	
		BCF	10 ⁹ m ³	MMB	10 ⁶ m ³	MMBOE	10 ⁶ m ³	
ô F	P90	2,802	79.3	25.4	4.04	1,550	246	
lace skee	P50	4,330	123	42.5	6.76	2,450	390	
In-P Jnri:	P10	6,605	187	69.8	11.1	3,808	605	
-	Mean	4,559	129	45.6	7.25	2,583	411	
éd	P90	-	-	-	-	-	-	
lace ?isk	P50	-	-	-	-	-	-	
II - P	P10	-	-	-	-	-	-	
Fu	Mean	6.92	0.20	0.07	0.01	4.07	0.65	
ble d	P90	2,083	59.0	18.8	2.99	753	120	
eral ske	P50	3,240	91.7	31.9	5.07	1,172	186	
scov	P10	4,978	141	52.7	8.37	1,809	288	
Re	Mean	3,419	96.8	34.2	5.44	1,237	197	
ble ed	P90	-	-	-	-	-	-	
eral 3isk	P50	-	-	-	-	-	-	
illy F	P10	-	-	-	-	-	-	
Fu	Mean	5.16	0.146	0.054	0.009	1.92	0.31	

Appendix 3 – C. Shelburne Corridor

Potential Resource - Fully Risked (MMB)

			Shelburne	e - Porous (Carbonate	Bank Edge	
		Natura	al Gas	Natural G	as Liquids	Oil Equivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
a T	P90	2,084	59.0	7.80	1.24	1,220	194
lace	P50	4,659	132	18.1	2.88	2,737	435
In-P	P10	9,324	264	38.5	6.12	5,596	890
_	Mean	5,293	150	21.2	3.37	3,140	499
ed	P90	-	-	-	-	-	-
lace 3isk	P50	-	-	-	-	-	-
In-P	P10	-	-	-	-	-	-
E E	Mean	516	14.6	2.07	0.33	307	48.7
ble d	P90	477	13.5	1.81	0.29	388	61.6
eral	P50	1,173	33.2	4.57	0.73	885	141
Unri	P10	2,651	75.1	10.8	1.71	1,832	291
Re	Mean	1,406	39.8	5.62	0.89	1,021	162
ble ed	P90	-	-	-	-	-	-
eral 3isk	P50	-	-	-	-	-	-
cov IIIy F	P10	-	-	-	-	-	-
Fu	Mean	140	3.96	0.559	0.089	100	15.9

		Shel	burne - Ju	rassic Turt	les & Folds	(primary	salt)
		Natura	al Gas	Natural G	as Liquids	Oil Equivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
0 T	P90	2,780	78.7	25.4	4.04	1,484	236
lace skee	P50	5,156	146	50.5	8.03	2,793	444
In-P Jnri	P10	9,153	259	94.8	15.1	5,067	806
_	Mean	5,645	160	56.4	8.97	3,072	488
ed	P90	-	-	-	-	-	-
lace lisk	P50	-	-	-	-	-	-
II-P	P10	-	-	-	-	-	-
Fu	Mean	60.2	1.70	0.62	0.10	32.4	5.14
ble d	P90	1,663	47.1	15.1	2.41	598	95.1
eral	P50	3,080	87.2	30.3	4.82	1,121	178
Cov	P10	5,502	156	57.3	9.11	2,010	320
Re	Mean	3,387	95.9	33.9	5.39	1,230	196
ble ed	P90	-	-	-	-	-	-
eral Risk	P50	-	-	-	-	-	-
illy F	P10	-	-	-	-	-	-
Fu	Mean	36.3	1.028	0.374	0.059	12.9	2.05

		Shelb	urne - Cre	taceous Tu	rtles & Fol	ds (primar	y salt)	
		Natura	al Gas	Natural G	as Liquids	Oil Equ	uivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³	
0 T	P90	5,268	149	48.1	7.65	2,777	442	
lace skee	P50	8,878	251	86.4	13.7	4,677	744	
In-P Jnri:	P10	13,229	375	141	22.4	7,227	1,149	
_	Mean	9,094	258	91.0	14.5	4,865	773	
ed	P90	-	-	-	-	-	-	
lace isk	P50	-	-	-	-	-	-	
In-P	P10	-	-	-	-	-	-	
Fu	Mean	66.1	1.87	0.66	0.10	37.0	5.89	
ble d	P90	3,911	111	35.7	5.68	1,303	207	
eral ske	P50	6,638	188	64.5	10.3	2,185	347	
Cov	P10	9,954	282	106	16.8	3,315	527	
Re	Mean	6,821	193	68.3	10.9	2,259	359	
ble ed	P90	-	-	-	-	-	-	
eral Risk	P50	-	-	-	-	-	-	
scov IIIy F	P10	-	-	-	-	-	-	
Re Fu	Mean	49.2	1.39	0.487	0.077	16.9	2.68	

Shelburne - Cretaceous Turtles & Folds (primary salt) Potential Resource - Fully Risked (MMB)

		s	Shelburne - Cretaceous Stratigraphic Onlap						
		Natura	al Gas	Natural G	as Liquids	Oil Equ	Oil Equivalent		
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
	P90	3,046	86.2	28.2	4.48	1,550	246		
lace skee	P50	5,096	144	49.6	7.9	2,605	414		
In-P Jnri	P10	7,616	216	80.8	12.8	4,019	639		
_	Mean	5,254	149	52.5	8.3	2,717	432		
ed	P90	-	-	-	-	-	-		
lace ?isk	P50	-	-	-	-	-	-		
In-P	P10	-	-	-	-	-	-		
Ŀ	Mean	96.0	2.72	1.00	0.16	50.6	8.05		
ble d	P90	2,268	64	20.9	3.33	767	122		
era	P50	3,814	108	37.0	5.89	1,286	204		
Cov	P10	5,751	163	60.8	9.67	1,959	311		
Re	Mean	3,940	112	39.4	6.26	1,334	212		
ble	P90	-	-	-	-	-	-		
eral Risk	P50	-	-	-	-	-	-		
scov Illy F	P10	-	-	-	-	-	-		
Fu	Mean	72.1	2.04	0.749	0.119	24.8	3.94		

Shelburne - Cretaceous Stratigraphic Onlap Potential Resource - Fully Risked (MMB)

		Shelb	Shelburne - Cretaceous three way traps on salt flanks						
		Natura	al Gas	Natural G	as Liquids Oil Equivaler				
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
0 T	P90	5,097	144	46.6	7.41	2,610	415		
lace skee	P50	8,471	240	82.6	13.1	4,412	701		
In-P Jnri	P10	12,562	356	134	21.3	6,747	1,073		
	Mean	8,701	246	87.0	13.8	4,578	728		
ed	P90	-	-	-	-	-	-		
lace lisk	P50	-	-	-	-	-	-		
In-P	P10	-	-	-	-	-	-		
Ŀ	Mean	46.4	1.31	0.47	0.075	24.2	3.85		
ble d	P90	3,813	108	34.6	5.49	1,296	206		
eral	P50	6,323	179	61.6	9.80	2,162	344		
Cov	P10	9,457	268	101	16.0	3,266	519		
Re	Mean	6,527	185	65.3	10.4	2,237	356		
ble	P90	-	-	-	-	-	-		
eral Risk	P50	-	-	-	-	-	-		
scov IIIy F	P10	-	-	-	-	-	-		
Fu	Mean	34.7	0.983	0.351	0.056	11.7	1.86		

Shelburne - Cretaceous Three Way Traps on Salt Flanks Potential Resource - Fully Risked (MMB)

			Shelbur	ne - Chalk	Play - T50 d	closures		
		Natura	al Gas	Natural G	as Liquids	Oil Equ	uivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³	
	P90	28,958	820	158.1	25.14	9,511	1,512	
lace skee	P50	49,336	1,397	291.5	46.3	16,355	2,600	
In-P Jnri	P10	79,429	2,249	497	79.0	26,455	4,206	
	Mean	52,114	1,476	312.7	49.7	17,319	2,753	
ed	P90	-	-	-	-	-	-	
lace ?isk	P50	-	-	-	-	-	-	
In-P	P10	-	-	-	-	-	-	
Ŀ	Mean	2,076	58.8	12.4	1.97	692	110	
ble d	P90	6,274	178	34.3	5.46	2,021	321	
eral	P50	12,558	356	73.7	11.7	3,792	603	
Cov	P10	23,347	661	144	22.9	6,539	1,040	
- Be	Mean	13,908	394	83.6	13.3	4,085	649	
ble	P90	-	-	-	-	-	-	
eral ?isk	P50	-	-	-	-	-	-	
scov IIIy F	P10	-	-	-	-	-	-	
Re Fu	Mean	561	15.9	3.36	0.534	165	26.2	

Shelburne - Chalk Play - T50 Closures

		A	Abenaki-Sable Pre-salt rotated fault blocks						
		Natura	al Gas	Natural G	as Liquids	Oil Equ	ivalent		
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
а Т	P90	2,727	77.2	24.6	3.92	1,558	248		
lace skee	P50	4,387	124	43.2	6.86	2,574	409		
In-P Jnri:	P10	6,984	198	73.1	11.6	4,206	669		
	Mean	4,651	132	46.5	7.40	2,752	438		
ed	P90	-	-	-	-	-	-		
lace ?isk	P50	-	-	-	-	-	-		
In-P	P10	-	-	-	-	-	-		
1	Mean	13.2	0.374	0.122	0.019	7.66	1.22		
ble d	P90	2,031	57.5	18.4	2.92	749	119		
eral	P50	3,277	92.8	32.3	5.14	1,227	195		
Unri	P10	5,247	149	55.1	8.75	1,973	314		
Re	Mean	3,487	98.8	34.9	5.55	1,302	207		
ble	P90	-	-	-	-	-	-		
eral 3isk	P50	-	-	-	-	-	-		
scov IIIy F	P10	-	-	-	-	-	-		
Fu	Mean	10.1	0.285	0.093	0.015	3.72	0.592		

Appendix 4 – D. Abenaki-Sable Corridor

		Abenak	i-Sable Mi	ssisauga L	istric Fault	Rollovers	- Shelf
		Natura	al Gas	Natural G	as Liquids	Oil Equ	ivalent
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
• T	P90	16,410	465	154	24.4	4,481	712
lace skee	P50	31,719	898	309	49.1	8,616	1,370
In-P	P10	54,638	1,547	568	90.4	14,825	2,357
	Mean	33,962	962	339	54.0	9,240	1,469
ed	P90	-	-	-	-	-	-
lace Sisk	P50	-	-	-	-	-	-
In-P	P10	39,174	1,109	396	63.0	10,659	1,695
Ŀ	Mean	10,669	302	107	17.0	2,899	461
ble	P90	12,289	348	115	18.3	2,762	439
eral ske	P50	23,827	675	231	36.8	5,334	848
Unri	P10	40,851	1,157	426	67.7	9,135	1,452
Re	Mean	25,472	721	255	40.5	5,712	908
ble ed	P90	-	-	-	-	-	-
eral Risk	P50	-	-	-	-	-	-
scov Illy F	P10	29,484	835	297	47.3	6,598	1,049
Fu	Mean	8,004	227	80.0	12.7	1,794	285

		Abenaki-	Sable Loga	an Canyon	Listric Fau	lt Rollover	rs - Shelf	
		Natura	al Gas	Natural G	as Liquids	Oil Equ	uivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³	
с. Т	P90	9,351	265	87.5	13.9	2,839	451	
lace skee	P50	17,329	491	169	26.8	5,140	817	
In-P Jnri:	P10	29,139	825	302	48.1	8,526	1,355	
_	Mean	18,464	523	185	29.4	5,462	868	
p	P90	-	-	-	-	-	-	
lace îisk	P50	-	-	-	-	-	-	
In-P	P10	17,549	497	173	27.4	5,197	826	
Ŀ	Mean	3,743	106	37.6	5.98	1,105	176	
ble d	P90	7,011	199	65.4	10.4	1,675	266	
eral	P50	12,934	366	126	20.1	3,059	486	
Unri	P10	21,832	618	227	36.1	5,093	810	
Be	Mean	13,851	392	139	22.0	3,260	518	
ble	P90	-	-	-	-	-	-	
erat	P50	-	-	-	-	-	-	
scov IIIy F	P10	13,158	373	129	20.5	3,091	491	
Re Fu	Mean	2,805	79.4	28.2	4.48	660	105	

		А	benaki-Sa	ble Porous	Carbonate	e Bank Edg	e
		Natura	al Gas	Natural G	as Liquids	Oil Equ	ivalent
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
0.7	P90	1,479	41.9	5.52	0.877	854	136
lace skee	P50	3,311	93.7	12.9	2.05	1,946	309
In-P Jnri	P10	6,450	183	26.7	4.24	3,815	607
_	Mean	3,694	105	14.8	2.35	2,188	348
ed	P90	-	-	-	-	-	-
lace ?isk	P50	-	-	-	-	-	-
II - P	P10	3,911	111	15.6	2.47	2,316	368
L L	Mean	958	27.1	3.85	0.612	567	90.1
ble d	P90	339	9.6	1.28	0.203	270	43.0
era	P50	821	23.2	3.24	0.514	623	99.0
Unri	P10	1,859	52.7	7.56	1.20	1,273	202
Re	Mean	984	27.9	3.94	0.626	712	113
ble	P90	-	-	-	-	-	-
eral Risk	P50	-	-	-	-	-	-
scov IIIy F	P10	1,013	28.7	4.03	0.641	752	120
Re Fu	Mean	258	7.29	1.04	0.165	185	29.5

		Ab	enaki-Sabl	e Cretace	ous Stratig	raphic Onl	ар
		Natura	al Gas	Natural G	as Liquids	Oil Equ	ivalent
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
a B	P90	991	28.1	9.28	1.476	181	28.8
lace sked	P50	2,008	56.9	19.6	3.12	367	58.4
In-P Jnri:	P10	3,651	103	37.6	5.98	665	106
_	Mean	2,208	62.5	22.1	3.51	403	64.0
ed	P90	-	-	-	-	-	-
lace îisk	P50	-	-	-	-	-	-
In-P	P10	-	-	-	-	-	-
Ŀ	Mean	65.5	1.86	0.656	0.104	12.0	1.90
ble	P90	741	21.0	6.91	1.10	135	21.5
eral ske	P50	1,506	42.7	14.7	2.34	275	43.7
Unri	P10	2,751	77.9	28.3	4.50	502	79.8
- Be	Mean	1,656	46.9	16.5	2.63	302	48.0
ble	P90	-	-	-	-	-	-
eral Risk	P50	-	-	-	-	-	-
scov IIIy F	P10	-	-	-	-	-	-
Fu	Mean	49.3	1.40	0.493	0.078	8.99	1.43

		Abe	enaki-Sabl	e Sub-Salt	Canopy C	ut-off (She	elf)	
		Natura	al Gas	Natural G	as Liquids	Oil Equ	Oil Equivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³	
с. Т	P90	1,478	41.9	13.3	2.114	270	42.9	
lace sked	P50	2,403	68.1	23.6	3.75	438	69.7	
In-P Jnri:	P10	3,880	110	40.4	6.43	708	113	
_	Mean	2,558	72.4	25.6	4.07	467	74.2	
ed	P90	-	-	-	-	-	-	
lace Iisk	P50	-	-	-	-	-	-	
In-P	P10	-	-	-	-	-	-	
Ŀ	Mean	88.6	2.51	0.883	0.140	16.2	2.57	
ble d	P90	870	24.6	7.94	1.26	159	25.3	
eral	P50	1,434	40.6	14.2	2.25	262	41.6	
Scov	P10	2,338	66.2	24.4	3.87	427	67.8	
- Be	Mean	1,535	43.5	15.3	2.44	280	44.5	
ble	P90	-	-	-	-	-	-	
eral Risk	P50	-	-	-	-	-	-	
scov IIIy F	P10	-	-	-	-	-	-	
Fu	Mean	53.2	1.507	0.530	0.084	9.71	1.54	

		Abe	enaki-Sabl	e Sub-Salt	Canopy Cu	ut-off (Slo	pe)	
		Natura	al Gas	Natural G	as Liquids	Oil Equ	uivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³	
с. Т	P90	34,246	970	316	50.2	6,241	992	
lace sked	P50	62,614	1,773	615	97.8	11,422	1,816	
In-P Jnri:	P10	108,189	3,064	1,129	180	19,721	3,135	
_	Mean	67,557	1,913	676	108	12,324	1,959	
pa	P90	-	-	-	-	-	-	
lace Iisk	P50	-	-	-	-	-	-	
In-P	P10	-	-	-	-	-	-	
Ŀ	Mean	5,031	142.5	50.266	7.99	918	146	
ble d	P90	25,634	725.9	236	37.5	4,664	742	
eral	P50	47,040	1,332.0	458	72.9	8,579	1,364	
Scov	P10	81,089	2,296.2	846	134	14,823	2,357	
Be _	Mean	50,676	1,435.0	507	80.6	9,244	1,470	
ble	P90	-	-	-	-	-	-	
eral Risk	P50	-	-	-	-	-	-	
scov IIIy F	P10	-	-	-	-	-	-	
Fu	Mean	3,763	107	37.6	5.98	686	109	

Abenaki-Sable Sub-salt Canopy Cut-Off (Slope) Potential Resource - Fully Risked (MMB)

		Abena	ki-Sable J	urassic Tur	tles & Fold	ls (primary	/ salt)
		Natura	al Gas	Natural G	as Liquids	Oil Equ	ivalent
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
	P90	11,333	321	102	16.2	2,067	329
lace sker	P50	18,639	528	183	29.1	3,398	540
In-P Jnri:	P10	29,076	823	309	49.1	5,310	844
_	Mean	19,551	554	196	31.1	3,567	567
ed	P90	-	-	-	-	-	-
lace lisk	P50	-	-	-	-	-	-
In-P	P10	-	-	-	-	-	-
Fu	Mean	1,024	29.0	10.2	1.62	187	29.7
al d	P90	6,746	191	60.6	9.64	1,227	195
eral ske	P50	11,157	316	109	17.4	2,034	323
Cov	P10	17,550	497	186	29.6	3,203	509
Re	Mean	11,732	332	118	18.7	2,140	340
ble	P90	-	-	-	-	-	-
erat isku	P50	-	-	-	-	-	-
cov Illy F	P10	-	-	-	-	-	-
Fu	Mean	615	17.4	6.12	0.972	112	17.8

		Abenaki	i-Sable Cr	etaceous T	urtles & Fo	olds (prima	ary salt)
		Natura	al Gas	Natural G	as Liquids	Oil Equ	ivalent
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
с. Т	P90	24,342	689	222	35.3	4,441	706
lace skee	P50	43,152	1,222	422	67.1	7,863	1,250
In-P Jnri:	P10	70,762	2,004	743	118.2	12,936	2,057
_	Mean	45,764	1,296	458	72.8	8,348	1,327
ed	P90	-	-	-	-	-	-
lace îisk	P50	-	-	-	-	-	-
In-P	P10	36,795	1,042	358	57.0	6,754	1,074
Ŀ	Mean	7,093	201	70.8	11.3	1,294	206
d ble	P90	18,137	514	165	26.3	3,306	526
eral ske	P50	32,269	914	316	50.2	5,885	936
Cov	P10	53,506	1,515	558	88.8	9,744	1,549
Be	Mean	34,320	972	343	54.6	6,261	995
ole ed	P90	-	-	-	-	-	-
eral Risk	P50	-	-	-	-	-	-
cov Illy F	P10	27,397	776	265	42.1	5,018	798
Fu	Mean	5,331	151	53.2	8.46	972	155

		Abenaki	Abenaki-Sable Cret Supra-Canopy Turtles & Folds (Sable)						
		Natura	al Gas	Natural G	as Liquids	Oil Equ	uivalent		
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
	P90	29,021	822	269	42.7	5,306	844		
lace sked	P50	52,597	1,489	513	81.5	9,596	1,526		
In-P Jnri:	P10	85,898	2,432	899	143	15,703	2,497		
_	Mean	55,413	1,569	554	88.1	10,108	1,607		
ed	P90	-	-	-	-	-	-		
lace îisk	P50	-	-	-	-	-	-		
In-P	P10	32,992	934	308	48.9	6,007	955		
Ŀ	Mean	6,587	187	65.8	10.5	1,202	191		
ble d	P90	21,631	613	201	31.9	3,943	627		
eral	P50	39,260	1,112	383	60.9	7,162	1,139		
Cov	P10	64,805	1,835	676	108	11,821	1,879		
Be	Mean	41,564	1,177	416	66.1	7,582	1,205		
ole ed	P90	-	-	-	-	-	-		
eral ?isk	P50	-	-	-	-	-	-		
scov IIIy F	P10	24,707	700	228	36.3	4,496	715		
Fu	Mean	4,936	140	49.3	7.84	900	143		

		Abenaki-	Sable Cre	taceous Th	ree Way T	raps on Sa	lt Flanks	
		Natura	al Gas	Natural G	as Liquids	Oil Equ	l Equivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³	
0.3	P90	7,936	225	72.5	11.5	1,446	230	
lace sker	P50	13,521	383	132	21.0	2,463	392	
In-P Jnri:	P10	21,757	616	229	36.3	3,977	632	
_	Mean	14,305	405	143	22.7	2,609	415	
p	P90	-	-	-	-	-	-	
lace îisk	P50	-	-	-	-	-	-	
In-P	P10	-	-	-	-	-	-	
Fu	Mean	364	10.3	3.67	0.584	66.4	10.5	
ble d	P90	5,940	168	54.4	8.64	1,084	172	
eral	P50	10,108	286	98.6	15.7	1,844	293	
Cov	P10	16,326	462	172	27.3	2,987	475	
Re	Mean	10,726	304	107	17.0	1,957	311	
ole ed	P90	-	-	-	-	-	-	
eral Risk	P50	-	-	-	-	-	-	
scov IIIy F	P10	-	-	-	-	-	-	
Fu	Mean	273	7.73	2.76	0.438	49.8	7.92	

			Abenaki-S	Sable Chall	k Play - T50	closures	
		Natura	al Gas	Natural G	as Liquids	Oil Equivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
с. Т	P90	26,246	743	141	22.3	4,689	746
lace	P50	39,567	1,120	233	37.0	7,059	1,122
In-P Jnri:	P10	57,620	1,632	368	58.5	10,273	1,633
	Mean	40,918	1,159	245	39.0	7,300	1,161
ed	P90	-	-	-	-	-	-
lace lisk	P50	-	-	-	-	-	-
In-P	P10	-	-	-	-	-	-
Fu	Mean	3,269	92.6	19.8	3.15	583	92.8
ble d	P90	5,509	156	30.7	4.88	983	156
eral ske	P50	10,038	284	58.6	9.32	1,792	285
Cov	P10	17,544	497	109	17.3	3,127	497
Re	Mean	10,914	309	65.4	10.4	1,947	310
ble	P90	-	-	-	-	-	-
eral ?isk	P50	-	-	-	-	-	-
COV III F	P10	-	-	-	-	-	-
Fu	Mean	879	24.9	5.30	0.843	157	24.9

		Н	uron - Mic	Mac Listric	Fault Roll	overs - She	elf
		Natura	al Gas	Natural G	as Liquids	Oil Equivalent	
		BCF	10 ⁹ m ³	MMB	10 ⁶ m ³	MMBOE	10 ⁶ m ³
a 7	P90	4,560	129	40.9	6.50	831	132
lace skee	P50	6,892	195	68.1	10.8	1,259	200
In-P Jnrij	P10	10,345	293	109	17.4	1,889	300
	Mean	7,222	204	72.2	11.5	1,317	209
ed	P90	-	-	-	-	-	-
lace ?isk	P50	-	-	-	-	-	-
In-P	P10	-	-	-	-	-	-
Ŀ	Mean	374	10.6	3.74	0.595	68.3	10.9
ble	P90	2,706	76.6	24.4	3.87	493	78
era	P50	4,134	117	40.6	6.45	754	120
Unri	P10	6,242	177	65.7	10.4	1,138	181
Be	Mean	4,333	123	43.3	6.88	790	126
ble	P90	-	-	-	-	-	-
eral Risk	P50	-	-	-	-	-	-
scov III F	P10	-	-	-	-	-	-
Fu	Mean	224	6.35	2.24	0.356	40.9	6.50

Appendix 5 – E. Huron Corridor

Potential Resource - Fully Risked (MMB)

		Hur	on - Missi	sauga Listr	ic Fault Ro	llovers - S	helf	
		Natura	al Gas	Natural G	as Liquids	Oil Equ	Oil Equivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³	
In-Place Unrisked	P90	11,809	334	107	17.0	2,157	343	
	P50	18,950	537	186	29.5	3,458	550	
	P10	29,768	843	315	50.1	5,441	865	
	Mean	20,066	568	201	31.9	3,660	582	
ed	P90	-	-	-	-	-	-	
lace Nisko	P50	-	-	-	-	-	-	
In-P	P10	20,335	576	203	32.3	3,709	590	
Fu	Mean	4,852	137	48.7	7.75	885	141	
ble	P90	8,828	250	79.6	12.7	1,612	256	
eral ske	P50	14,192	402	139	22.1	2,589	412	
Cov	P10	22,472	636	236	37.5	4,106	653	
Re	Mean	15,051	426	150	23.9	2,745	436	
ble	P90	-	-	-	-	-	-	
eral 3isk	P50	-	-	-	-	-	-	
scov IIIy F	P10	15,233	431	153	24.3	2,780	442	
Fu	Mean	3,637	103	36.5	5.81	664	106	

		Huro	Huron - Logan Canyon Listric Fault Rollovers - Shelf						
		Natura	al Gas	Natural G	as Liquids	Oil Equ	ivalent		
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
	P90	11,484	325	104	16.5	2,094	333		
lace skee	P50	18,857	534	186	29.6	3,441	547		
In-P Juri:	P10	30,060	851	316	50.3	5,467	869		
	Mean	19,954	565	200	31.7	3,640	579		
ed	P90	-	-	-	-	-	-		
lace lisk	P50	-	-	-	-	-	-		
In-P	P10	-	-	-	-	-	-		
Ŀ	Mean	1,546	43.8	15.3	2.44	282	44.8		
ble d	P90	8,573	243	77.1	12.3	1,562	248		
eral ske	P50	14,128	400	140	22.2	2,580	410		
Cov	P10	22,539	638	237	37.7	4,112	654		
Re	Mean	14,968	424	150	23.8	2,730	434		
ble ed	P90	-	-	-	-	-	-		
eral 3isk	P50	-	-	-	-	-	-		
scov Illy F	P10	-	-	-	-	-	-		
Fu	Mean	1,160	32.8	11.5	1.83	211	33.6		

			Huron -	Upper Slo	pe Folds	lurassic	
		Natura	al Gas	Natural G	as Liquids	Oil Equivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
0 T	P90	12,183	345	111	17.7	2,224	354
lace skee	P50	20,023	567	196	31.1	3,648	580
In-P Jnri	P10	31,503	892	330	52.5	5,760	916
_	Mean	21,060	596	211	33.5	3,842	611
ed	P90	-	-	-	-	-	-
lace ?isk	P50	-	-	-	-	-	-
II - P	P10	-	-	-	-	-	-
Ŀ	Mean	1,608	45.5	16.0	2.546	293.3	46.6
ble d	P90	7,283	206	66.4	10.6	1,330	211
era	P50	11,969	339	117	18.5	2,183	347
Scov	P10	18,967	537	198	31.5	3,459	550
Be	Mean	12,627	358	126	20.1	2,303	366
ble	P90	-	-	-	-	-	-
eral Risk	P50	-	-	-	-	-	-
scov III F	P10	-	-	-	-	-	-
F. B.	Mean	965	27.3	9.61	1.53	176	28.0

P10

		Huron	Huron - Upper Slope Folds - Cretaceous (Stonehouse)						
		Natura	al Gas	Natural G	as Liquids	Oil Equ	ivalent		
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
lace sked	P90	25,281	716	230	36.6	4,608	733		
	P50	42,679	1,209	417	66.3	7,783	1,237		
Jnri:	P10	69,752	1,975	727	115.6	12,727	2,023		
_	Mean	45,471	1,288	455	72.3	8,294	1,319		
ed	P90	-	-	-	-	-	-		
lace îisk	P50	-	-	-	-	-	-		
In-P	P10	40,462	1,146	394	62.6	7,376	1,173		
Fu	Mean	8,462	240	84.5	13.44	1,543	245		
ble d	P90	18,851	534	172.2	27.4	3,439	547		
eral	P50	31,912	904	313	49.8	5,826	926		
Unri	P10	52,513	1,487	546	86.9	9,587	1,524		
Re	Mean	34,109	966	341	54.2	6,222	989		
ble	P90	-	-	-	-	-	-		
eral Risk	P50	-	-	-	-	-	-		
scov IIIy F	P10	30,253	857	297	47.1	5,512	876		
Fu Ba	Mean	6,355	180	63.5	10.1	1,159	184		

		Hu	iron - Jura	ssic Supra-	·Canopy Tu	ırtles & Fo	lds
		Natura	al Gas	Natural G	as Liquids	Oil Equ	ivalent
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
	P90	9,972	282	91.6	14.6	1,819	289
lace sked	P50	16,280	461	160.0	25.4	2,969	472
In-P Jnri:	P10	25,860	732	269	42.8	4,711	749
_	Mean	17,231	488	172	27.3	3,143	500
ed	P90	-	-	-	-	-	-
lace îisk	P50	-	-	-	-	-	-
In-P	P10	-	-	-	-	-	-
Ŀ	Mean	1,434	40.6	14.3	2.27	261	41.6
ble d	P90	5,949	168	54.3	8.63	1,086	173
eral	P50	9,753	276	95.6	15.2	1,779	283
Unri	P10	15,510	439	162	25.8	2,830	450
- Be	Mean	10,336	293	103	16.4	1,885	300
ble	P90	-	-	-	-	-	-
eral Risk	P50	-	-	-	-	-	-
scov IIIy F	P10	-	-	-	-	-	-
Fu	Mean	857	24.3	8.55	1.36	156	24.9

			Huron	- Cretaceo	us Supra-O	Canopy	
		Natura	al Gas	Natural G	as Liquids	Oil Equivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
0.7	P90	5,773	163	52.5	8.35	1,053	167
lace skee	P50	9,644	273	94.4	15.0	1,759	280
In-P Jnri	P10	15,574	441	163	26.0	2,840	451
-	Mean	10,263	291	103	16.3	1,872	298
ed	P90	-	-	-	-	-	-
lace ?isk	P50	-	-	-	-	-	-
II - P	P10	-	-	-	-	-	-
3	Mean	868	24.6	8.78	1.40	158.4	25.2
ble d	P90	4,278	121	39.1	6.22	781	124
eral	P50	7,240	205	70.7	11.2	1,320	210
Scov	P10	11,703	331	123	19.6	2,137	340
Re	Mean	7,700	218	77.1	12.3	1,405	223
ble	P90	-	-	-	-	-	-
eral Risk	P50	-	-	-	-	-	-
scov III F	P10	-	-	-	-	-	-
Fu	Mean	652	18.5	6.60	1.05	119	18.9

		Huron - C	luron - Cretaceous Salt-Cored-Folds - Banquereau Fold-Belt						
		Natura	al Gas	Natural G	as Liquids	Oil Equivalent			
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
0 8	P90	23,528	666	217	34.4	7,494	1,191		
lace skee	P50	39,827	1,128	388	61.6	12,617	2,006		
Unri U	P10	64,040	1,813	674	107	20,429	3,248		
_	Mean	42,215	1,195	422	67.1	13,426	2,135		
ed	P90	-	-	-	-	-	-		
lace ?isk	P50	-	-	-	-	-	-		
II P	P10	26,765	758	249	39.5	8,295	1,319		
Ŀ	Mean	5,012	142	50.6	8.04	1,590	253		
ble d	P90	17,517	496	162	25.8	4,337	690		
era	P50	29,821	844	291	46.2	7,321	1,164		
Cov	P10	48,054	1,361	508	80.7	11,848	1,884		
Re _	Mean	31,657	896	317	50.3	7,778	1,237		
ble	P90	-	-	-	-	-	-		
eral Risk	P50	-	-	-	-	-	-		
scov IIIy F	P10	19,759	560	186	29.6	4,923	783		
Fu	Mean	3,763	107	38.0	6.04	923	147		

		Huro	Huron - Sub-Salt Canopy Cut-off (West Laurentian)						
		Natura	al Gas	Natural G	as Liquids	Oil Equ	Oil Equivalent		
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
	P90	3,176	90	29.1	4.62	577	91.8		
lace sked	P50	5,891	167	57.4	9.12	1,075	171		
In-P Unri	P10	10,112	286	106	16.8	1,843	293		
_	Mean	6,348	180	63.5	10.1	1,158	184		
ed	P90	-	-	-	-	-	-		
lace îisk	P50	-	-	-	-	-	-		
In-P	P10	-	-	-	-	-	-		
Ŀ	Mean	219	6.21	2.21	0.351	40.0	6.36		
ble d	P90	2,368	67.0	21.8	3.46	432	68.7		
eral	P50	4,417	125	43.0	6.83	804	128		
Scov	P10	7,553	214	79.2	12.6	1,378	219		
- Be	Mean	4,760	135	47.6	7.58	868	138		
ble	P90	-	-	-	-	-	-		
eral Risk	P50	-	-	-	-	-	-		
scov IIIy F	P10	-	-	-	-	-	-		
Fu	Mean	165	4.67	1.66	0.264	30.1	4.79		

		Huron -	Huron - Cretaceous Stratigraphic Onlap (seaward of BSW)						
		Natura	al Gas	Natural G	as Liquids	Oil Equ	Oil Equivalent		
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
a 7	P90	4,206	119	38.5	6.12	1,331	212		
lace skee	P50	7,554	214	74.3	11.8	2,442	388		
In-P Jnri:	P10	13,087	371	136	21.6	4,233	673		
_	Mean	8,210	232	82.1	13.0	2,647	421		
ed	P90	-	-	-	-	-	-		
lace îisk	P50	-	-	-	-	-	-		
In-P	P10	-	-	-	-	-	-		
Ŀ	Mean	337	9.54	3.35	0.533	109.5	17.4		
ble d	P90	3,149	89.2	28.9	4.59	776	123		
eral	P50	5,654	160	55.5	8.82	1,403	223		
Unri	P10	9,817	278	102	16.2	2,428	386		
Be	Mean	6,156	174	61.5	9.78	1,525	242		
ble	P90	-	-	-	-	-	-		
eral ?isk	P50	-	-	-	-	-	-		
scov IIIy F	P10	-	-	-	-	-	-		
Fu	Mean	253	7.16	2.51	0.400	63.0	10.0		

		Huron -	Huron - Cretaceous Three-way Closures on Diapir Flanks						
		Natura	al Gas	Natural G	as Liquids	s Liquids Oil Equivalent			
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³		
с Т	P90	10,683	303	97.7	15.5	3,475	553		
lace skee	P50	18,715	530	182	28.9	6,069	965		
In-P Jnri:	P10	29,674	840	309	49.2	9,742	1,549		
_	Mean	19,579	554	195	31.1	6,400	1,018		
ed	P90	-	-	-	-	-	-		
lace îisk	P50	-	-	-	-	-	-		
In-P	P10	-	-	-	-	-	-		
Ŀ	Mean	769	21.8	7.78	1.24	251	40.0		
ble d	P90	7,934	225	73.1	11.6	1,996	317		
eral	P50	13,987	396	136	21.7	3,480	553		
Unri	P10	22,297	631	231	36.8	5,587	888		
Be	Mean	14,681	416	147	23.3	3,668	583		
ble	P90	-	-	-	-	-	-		
eral Risk	P50	-	-	-	-	-	-		
scov IIIy F	P10	-	-	-	-	-	-		
Fu	Mean	579	16.4	5.86	0.932	145	23.0		

		Sydney Basin - Horton Fault Blocks					
		Natural Gas		Natural Gas Liquids		Oil Equivalent	
		BCF	10 ⁹ m ³	MMB	10 ⁶ m ³	MMBOE	10 ⁶ m ³
• T	P90	10,127	287	94.3	15.0	12,853	2,044
lace	P50	18,252	517	178	28.3	23,411	3,722
In-P Jnris	P10	30,952	876	324	51.5	39,477	6,276
	Mean	19,601	555	196	31.2	25,026	3,979
ed	P90	-	-	-	-	-	-
lace	P50	-	-	-	-	-	-
In-P	P10	-	-	-	-	-	-
E	Mean	611	17.3	6.08	0.967	776	123
ole d	P90	2,908	82.3	27.3	4.33	2,700	429
eral sked	P50	6,117	173	59.6	9.48	5,105	812
Cov	P10	11,680	331	123	19.5	8,959	1,424
Re	Mean	6,870	195	68.8	10.9	5,542	881
ole ed	P90	-	-	-	-	-	-
erał	P50	-	-	-	-	-	-
cov IIIy F	P10	-	-	-	-	-	-
Re Fu	Mean	222	6.28	2.21	0.352	172	27.3

Appendix 6 – F. Sydney Basin

Potential Resource - Fully Risked (MMB)

			Sydney Basin - Carboniferous Inversion Folds					
			Natural Gas		Natural Gas Liquids		Oil Equivalent	
			BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
	с. Т	P90	2,008	56.9	18.4	2.93	3,490	555
	lace skee	P50	3,612	102	35.3	5.61	6,221	989
	Jnri	P10	6,180	175	64.2	10.2	10,655	1,694
	_	Mean	3,901	110	39.0	6.20	6,714	1,067
	ed	P90	-	-	-	-	-	-
	lace ?isk	P50	-	-	-	-	-	-
	In-P Fully F	P10	-	-	-	-	-	-
		Mean	313	8.87	3.14	0.500	540	85.8
	ble d	P90	583	16.5	5.41	0.861	711	113
	eral	P50	1,219	34.5	12.0	1.90	1,320	210
	Recov Unri	P10	2,359	66.8	24.1	3.84	2,363	376
		Mean	1,366	38.7	13.7	2.17	1,450	231
	ble	P90	-	-	-	-	-	-
	era Risk	P50	-	-	-	-	-	-
	illy F	P10	-	-	-	-	-	-
	Re Fu	Mean	110	3.12	1.11	0.176	117	18.6

		Sydney Basin - Windsor Reefs					
		Natural Gas		Natural Gas Liquids		Oil Equivalent	
		BCF	10 ⁹ m ³	ММВ	10 ⁶ m ³	MMBOE	10 ⁶ m ³
а Т	P90	4,798	136	18.0	2.87	6,229	990
lace	P50	10,695	303	41.9	6.67	13,811	2,196
In-P Jnris	P10	23,021	652	94.1	15.0	29,672	4,717
	Mean	12,569	356	50.2	7.99	16,234	2,581
ed	P90	-	-	-	-	-	-
lace lisk	P50	-	-	-	-	-	-
In-P	P10	-	-	-	-	-	-
Ŀ	Mean	264	7.46	1.05	0.166	333	53.0
ble d	P90	1,090	30.9	4.06	0.645	1,238	197
eral ske	P50	2,696	76.3	10.5	1.68	2,866	456
Unri	P10	6,474	183	26.2	4.17	6,224	990
Re	Mean	3,356	95.0	13.4	2.13	3,392	539
ole ed	P90	-	-	-	-	-	-
eral Risk	P50	-	-	-	-	-	-
illy F	P10	-	-	-	-	-	-
Fu	Mean	69.6	1.97	0.274	0.044	70.0	11.1

